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Abstract. We discuss various aspects of resummed chiral perturbation theory, which was developed recently
in order to consistently include the possibility of large vacuumfluctuations of the sspairs and the scenario with
smaller value of the qq condensate for Nf = 3. The subtleties of this approach are illustrated using a concrete
exampleof observables connectedwithπη scattering.Thisprocess seems tobea suitable theoretical laboratory
for this purpose due to its sensitivity to the values of theO(p4) LECs, namely to the values of thefluctuation pa-
rametersL4 andL6.Wediscuss several issues in detail, namely the choice of “good” observables andproperties
of their bare expansions, the “safe” reparametrization in terms of physical observables, the implementation of
exact perturbative unitarity and exact renormalization scale independence, the role of higher order remainders
and estimates of their influence.Wemake a detailed comparison with standard chiral perturbation theory and
use generalized χPT as well as resonance chiral theory to estimate the higher order remainders.

1 Introduction

As is well known, at the energy scales E� ΛH ∼ 1 GeV
the physics of QCD is non-perturbative and is governed
by chiral symmetry (χS) SU(Nf )L×SU(Nf )R. This global
symmetry is present on the classical level within QCD
with Nf massless quarks (in the chiral limit of QCD),
and on the quantum level there exist strong theoretical
(for Nf ≥ 3) and phenomenological arguments for spon-
taneous symmetry breakdown (SSB) of χS according to
the pattern SU(Nf )L×SU(Nf )R→ SU(Nf )V . Due to con-
finement, quark and gluon fields do not represent appro-
priate low energy degrees of freedom within the above
mentioned energy range; the relevant degrees of freedom
correspond to the lightest colorless hadrons in the QCD
spectrum. As far as the Green functions of quark currents
are concerned, it is possible to obtain a general solution of
the chiral Ward identities in terms of the low energy ex-
pansion. This expansion can be organized most efficiently
using the methods of effective field theory corresponding to
the low energy limit of QCD with Nf light quark flavors,
which is known as chiral perturbation theory (χPT) [1–3].
χPT describes the low energy QCD dynamics in terms
of the lightest (N2f − 1)-plet of the pseudoscalar mesons
identified with the Goldstone bosons (GB) of the spon-
taneously broken chiral symmetry, which appear in the
particle spectrum of the theory as a consequence of the
Goldstone theorem. In the chiral limit these pseudoscalars
are massless and dominate the low energy dynamics of
QCD. They interact weakly at low energiesE�ΛH , where
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ΛH ∼ 1 GeV is the hadronic scale corresponding to the
masses of the lightest non-Goldstone hadrons. This fea-
ture of the GB dynamics enables a systematic perturbative
treatment with the expansion parameter (E/ΛH). Within

real QCD, the quark mass term LQCDf ,mass breaks χS explic-
itly and the Goldstone bosons become pseudo-Goldstone
bosons (PGB) with nonzero masses. Though mf �= 0, for
mf �ΛH the mass term L

QCD
fmass can be treated as a pertur-

bation. As a consequence, PGBs correspond to the lightest
hadrons in the QCD spectrum1 (identified with π0, π± for
Nf = 2 and π

0, π±,K0,K0,K±, η for Nf = 3) and the in-
teraction of PGB at the energy scale E� ΛH continues
to be weak. Because MP < ΛH , the QCD dynamics at
E� ΛH is still dominated by these particles and the ef-
fective theory provides us with a simultaneous expansion
in powers of (E/ΛH) and (mf/ΛH). The Lagrangian of
χPT can be constructed on the basis of symmetry ar-
guments only; the unknown information about the non-
perturbative properties of QCD are hidden in the parame-
ters known as low energy constants (LEC) [2, 3]. These are
related to the (generally nonlocal) order parameters of the
SSB of χS, the most prominent of them being the Gold-
stone boson decay constant F0 and the chiral condensate

2

B0 =Σ/F
2
0 , where Σ =−〈uu〉0.

1 The PGB masses MP can be expanded in the powers (and
logarithms) of the quark masses starting from the linear term
and therefore vanish in the chiral limit.
2 The parameter F0 is, however, more fundamental in the
sense that F0 �=0 is both a necessary and sufficient condition for
SSB, while 〈qf qf 〉0 �= 0 corresponds to the sufficiency condition
only. (The lower index zero here means the chiral limit.)



232 M. Kolesár, J. Novotný: πη scattering and the resummation of the vacuum fluctuation in three-flavor χPT

To be more precise, Nf -flavor χPT is in fact an ex-
pansion inmi, around the SU(Nf )L×SU(Nf )R chiral limit
mi = 0, i ≤ Nf , while keeping all the other quark masses
for i > Nf at their physical values. Because the mu,d are
much smaller not only in comparison with the hadronic
scale ΛH but also in comparison with the intrinsic QCD
scale ΛQCD, the two-flavor χPT is expected to produce a
well-behaved expansion corresponding to small corrections
to the SU(2)L×SU(2)R chiral limit.
The strange quark mass, on the other hand, though still

small enough with respect to ΛH to be treated as an expan-
sion parameter within three-flavorχPT (relating real QCD
with its SU(3)L×SU(3)R chiral limit), is of comparable
size with respect to ΛQCD. This fact, besides the expected
worse convergence of the three-flavor χPT, might also
have interesting consequences for the possible difference
between the Nf = 2 and Nf = 3 chiral dynamics. As dis-
cussed intensively in a series of papers [4–9], ms � ΛQCD
suggests that the loop effects of the vacuum ss pairs are
not suppressed as strongly as for the heavy quarks and
might enhance the magnitude of the Nf = 2 chiral order
parameters relatively to theirNf = 3 chiral limits. This ap-
plies mainly to F0(Nf ) andΣ(Nf ) = F

2
0 (Nf )B0(Nf ), which

should satisfy the paramagnetic inequalities [4]

Σ(2)>Σ(3) = lim
ms→0

Σ(2) ,

F0(2)> F0(3) = lim
ms→0

F0(2) . (1)

The leading order difference between the two-flavor and
three-flavor values is proportional to ms, with coefficients
measuring the violation of the OZI rule in the 0++ chan-
nel [4]; e.g.

Σ(2) =Σ(3)+msZ
s

1+ . . . , (2)

where

Z
s

1 = lim
ms→0

∫
d4x〈uu(x)ss(0)〉c (3)

and analogously for F0. The fluctuation parameter Z
s

1 is
related to the LEC Lr6(µ) (and L

r
4(µ) for F0) of three-

flavor χPT. As discussed in [4–9], these parameters might
be larger than their estimate based on the large Nc ex-
pansion, provided Nf = 3 is close to the critical number
of light quark flavors N critf for which the chiral symme-
try is restored. Available estimates vary widely, some in-
dicating a larger number, N critf ∼ 10–12, for Nc = 3 [10–
12], while other approaches [13, 14] and lattice calcula-
tions [15–19] discuss a possibly much lower value, N critf ≤
6. Provided the scenario of large vacuum fluctuations is
relevant, the second term in (2) (called the induced conden-
sate in [5, 8, 20]) may be numerically comparable with the
first term and the three-flavor condensate Σ(3) could be
substantially smaller than the two-flavor one, the value of
which is experimentally accessible in recent experiments.
Analogous reasonings apply to the relationship of F0(2)
and F0(3).
These effects could possibly have strong consequences

for the organization of the chiral expansion in the Nf = 3

case [4, 6–8]. Let us recall that the general form of the La-
grangian of χPT is

L=
∑
m,n

L(m,n) , (4)

where

L(m,n) =
∑
k

C
(m,n)
k O

(m,n)
k , (5)

with the LECs C
(m,n)
k and the independent set of the oper-

ators O
(m,n)
k =O(∂mmnf ).

In order to be able to treat the double expansion consis-
tently, it is necessary to assign a single integer parameter
called the chiral order to each term L(m,n) =O(∂mmnf ) of
the effective Lagrangian. The terms Lk with chiral order
k are then called O(pk) terms. Obviously, ∂ = O(p). A
matter of discussion might be, however, the question of
the chiral power of mf . This question is intimately con-
nected to the scenario according to which the SSB of χS is
realized.
The standard scenario [2, 3] corresponds to the assump-

tion that the SSB order parametersΣ(Nf ) and F0(Nf ) are
large in the sense that the ratios

X(Nf ) =
2m̂Σ(Nf )

F 2πM
2
π

, (6)

(where m̂= (mu+md)/2) and

Z(Nf ) =
F 20 (Nf )

F 2π
(7)

are close to 1. Because M2π = O(p
2), it is then natural to

take mf =O(p
2), i.e. k =m+2n. This results in the stan-

dard χPT (SχPT in what follows). This scenario seems to
be experimentally confirmed [21] for Nf = 2; a recent an-
alysis of the data yields [22]

X(2) = 0.81±0.07 , Z(2) = 0.89±0.03 . (8)

The O(p2) Lagrangian [2, 3]

L2 =
F 20
4

(
〈∂µU

+∂µU〉+2B0〈U
+M+M+U〉

)
(9)

gives Σ(2)LO = Σ(3) = B0F
2
0 at the leading order, thus

postponing the difference Σ(2)−Σ(3) to higher orders.
The same is true for the parameters F0(Nf ). Let us also
note that the quark mass ratio r =ms/m̂ is not a free pa-
rameter here3. At the leading order one has

r = 2
M2K
M2π
−1 . (10)

An alternative way of chiral power counting for Nf = 3
is the generalized χPT (GχPT) [24–29], originally de-

3 On the contrary, the value of r is usually taken as input in
standard O(p6) fits; see e.g. [23] and references therein.
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signed to treat the scenario with small quark condensate
X(3)� 1 and to take the quark mass ratio r as a free
parameter. In the case X(3)� 1 it is natural to take
mf = O(p) and B0 = O(p); this means that k =m+n.
In contrast to SχPT, there are also odd chiral orders
and the O(p2) Lagrangian contains additional terms,
which are O(p4) within the standard chiral counting4 (see
e.g. [24, 25, 28]):

L2 =
F 20
4

(
〈∂µU

+∂µU〉+2B0〈U
+M+M+U〉

+A0〈(U
+M)2+(M+U)2〉+ZP0 〈U

+M−M+U〉2

+ZS0 〈U
+M+M+U〉2

)
. (11)

For the condensate Σ =−〈uu〉 we get at the leading order
for Nf = 3

ΣLO =B0F
2
0 +Z

S
0 (2m̂+ms) =Σ(3)+Z

S
0 (2m̂+ms)

(12)

and therefore

ΣLO(2) =Σ(3)+Z
S
0ms . (13)

This allows the difference Σ(2)−Σ(3) to appear already
at the leading order, consistently with the small Σ(3) sce-
nario. The next-to-leading order O(p3) Lagrangian

L3 =
F 20
4

(
ξ〈∂µU

+∂µUU+M+M+U〉

+ ξ̃〈∂µU
+∂µU〉〈U+M+M+U〉+ . . .

)
(14)

(where the ellipsis stands for the additional terms, which
are of the order O(p6) in SχPT) gives rise to the Nf = 3
relation

F 2π,NLO = F
2
0 (3)(1+2ξ̃(ms+2m̂)+2m̂ξ) , (15)

which implies that the difference F 20 (2)−F
2
0 (3) is treated

as an effect of the next-to-leading order

F 20 (2) = F
2
0 (3)(1+2ξ̃ms) . (16)

Therefore, neither SχPT nor GχPT may encompass the
case of large fluctuation parameter ξ̃, and the ratio
Z(3)� 1 at the leading order.
Quite recently, a consistentmethod of handling the case

X(3), Z(3)� 1 was proposed [4, 6–9]. Instead of chang-
ing the chiral power counting, it is based on more careful
manipulations with the chiral expansion. As was discussed
in the above references, the case X(3), Z(3)� 1 could
significantly influence the properties of the chiral expan-
sion inducing instabilities of the perturbative series cor-
responding to the observables, which cannot be linearly

4 Effectively generalized chiral power counting means partial
resummation of these terms.

related to the QCD correlators (such as the ratios like PGB
masses, scattering amplitudes etc.). For such quantities,
one should not perform a perturbative chiral expansion
of the denominators but rather keep the ratios in a non-
perturbative “resummed” form. The possibly large vac-
uum ss pair fluctuations are then parameterized in terms
of X(3), Z(3) and r and treated as free parameters. We
return to a detailed formulation of this recipe in the next
section.
The aim of this paper is to illustrate the “resummed”

form of the chiral expansion with special attention to its
formal properties and to the details and subtleties of the
general procedure. Motivated by our preliminary results
on πη scattering within GχPT [34], we have chosen the
observables connected with this process as a concrete ex-
ample which seems to be sensitive to the deviations from
the standard assumption X(3), Z(3)∼ 1 (note that some
recent phenomenological studies suggest the possibility of
X(3)∼ 0.5, cf. [6, 30–33]). Also, from the phenomenolog-
ical point of view, the off-shell πηπη∗ vertex is a neces-
sary building block for the non-resonant part of the ampli-
tude for the rare decay η→ π0π0γγ. Preliminary estimates
within GχPT [35, 36] suggest that the effect of a devia-
tion of this off-shell vertex from the standard case might,
at least in principle, be observed. The details will be pre-
sented elsewhere [37].
The amplitude of πη scattering was already calcu-

lated within SχPT to O(p4) (and within extended SχPT
with explicit resonance fields) in [38], where the authors
presented a prediction for the scattering lengths and
phase shifts of the S, P and D partial waves. We here
quote their O(p4) results for the S- and P -wave scatter-
ing lengths (in units of the pion Compton wavelength):

aSχPT0 = 7.2×10−3 and aSχPT1 =−5.2×10−4.
The paper is organized as follows. In Sect. 2 we reca-

pitulate the motivation for the resummed version of χPT
and the construction of the bare expansion of “good” ob-
servables. We make a detailed general discussion, con-
nected with the four-meson amplitude, of the strict chiral
expansion, the dispersive representation and the match-
ing of both approaches, stressing the reconciliation of ex-
act perturbative unitarity and the exact renormalization
scale independence in Sect. 3. Section 4 is devoted to the
general properties of the πη scattering amplitude. We
discuss the kinematics, the definition of suitable “good”
observables, the dispersion representation of the ampli-
tude and the construction of the bare expansion. Var-
ious possibilities of its reparametrization are described
in a detailed way in Sect. 5. A numerical illustration of
the particular variants is made in Sect. 6, where we also
numerically illustrate the subtleties of the construction
of the bare expansion. We recapitulate the results of the
standard variant of χPT and compare them with the re-
summed approach. We concentrate on the dependence on
the LECs as well as on the sensitivity to the higher order
remainders and make an attempt to estimate their values
using a matching with GχPT and a simple version of res-
onance chiral theory. Section 7 contains a summary and
conclusions. Some technical details are postponed to the
appendices.
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2 Resummation of the vacuum fluctuations –
motivation and basic notation

As we have mentioned in the Introduction, the potentially
large vacuum fluctuations of the ss pairs might result in
instabilities of the chiral expansion, which originate in the
possibility that for some observables the next-to-leading
order correction could be numerically comparable with the
leading order one. As discussed in [8, 9], this could gen-
erally cause problems with the convergence of the formal
chiral expansion. Nevertheless, at least for some carefully
defined “good” observables, it is natural to presume some
sort of satisfactory convergence properties. Such “good”
observables are assumed to be those which can be obtained
directly from the low energy correlation functions in the
domain of their analyticity far away from singularities and
which are linearly related to the corresponding correla-
tor [8, 9]. Typical examples are the squares of the PGB
decay constants F 2P , the products F

2
PM

2
P whereMP are the

PGB masses and also the subthreshold parameters which
can be derived from the products A

∏4
i=1 FPi , where A is

the PGB scattering amplitude 1+2→ 3+4. Let us write
the expansion of such a “good” observableG in the form of
a (carefully defined) bare expansion [8] as5,

G=G(2)+G(4)+GδG , (17)

where G(2) = g(2)(F0, B0,mq) and G
(4) = g(4)(F0, B0,mq,

Li,M
2
P ) correspond to the sum of the leading and next-to-

leading order terms respectively, and the renormalization
scale independent quantity δG accommodates the higher
order remainders.
A terminological note: in what follows we use the term

strict chiral expansion for an unmodified expansion in
terms of the LECs strictly respecting the chiral orders. The
bare expansion, though still expressed in terms of LECs,
accumulates some modifications dictated by physical re-
quirements. It is the bare expansion which is assumed to be
globally convergent.
For a “good” observable it is then assumed that

|δG| � 1 , (18)

as a natural assumption. This property of the bare chiral
expansion (17) is called global convergence in [8, 9]. Note,
however, that the validity of the inequality (18) might de-
pend on the definition of the remainder δG, which is not
fixed unambiguously and might differ according to the cal-
culation scheme in use.We will comment on this point later
on.
The above mentioned possible instability in (17) ap-

pears when G(2) ∼G(4), i.e. XG � 1, where

XG =
G(2)

G
. (19)

5 Here we tacitly assume the standard chiral power counting.
An analogous expansion could be written also for the general-
ized case.

Such an instability manifests itself in the expansion of the
observables depending on G nonlinearly [8]. For instance,
for a ratio of two “good” observables G and G′ formally
expanded in the form (17),

G

G′
=

(
G(2)

G′(2)

)
+

(
G(2)

G′(2)

)(
G(4)

G(2)
−
G′(4)

G′(2)

)
+
G

G′
δG/G′ ,

(20)

we get for the remainder δG/G′

δG/G′ =
(1−XG′)(XG−XG′)

X ′2G
+
δG

XG′
−
XGδG′

X ′2G
.

(21)

For XG′ � 1 this might be numerically large even if both
|δG|, |δG′ | were reasonably small. In this sense, the ratio
of two globally convergent observables need not to be nec-
essarily globally convergent too. It should therefore be
much safer not to expand such “dangerous” observables
and rather write the ratio in the “resummed” form

G

G′
=
G(2)+G(4)

G′(2)+G′(4)
+
G

G′
δ̃G/G′ . (22)

Equation (22) is an exact algebraic identity provided we
explicitly keep the remainder:

δ̃G/G′ =
δG− δG′

1− δG′
. (23)

In this case δ̃G/G′ remains for |δG|, |δG′ | � 1 under numer-
ical control.
Of course, only the fact that the bare expansion of some

observable is not globally convergent does not necessarily
correspond to the collapse of the convergence, because the
next-to-next-to-leading order G(6) can saturate the series
in such a way that the next-to-next-to-leading remainder

GδNNLOG =G−G(2)−G(4)−G(6) (24)

is reasonably small. Namely, this is the usual assump-
tion behind the O(p6) calculations. Violation of the global
convergence property here means merely that the O(p6)
contribution has an unnatural size, i.e. G(6) �G(2)+G(4).
This could, however, destabilize theO(p6) chiral expansion
of ratios in the way similar to that discussed above.
Provided we allow for the expansion of the “good” ob-

servables only, we are also pressed to modify the next step
leading from the bare expansion to the usual output of
χPT, consisting of a reparametrization of the expansion by
expressing some of the LECs in terms of the physical ob-
servables such as masses and PGB decay constants. This
step converts the series into an expansion in powers and
logs of the (squared) PGB masses instead of quark masses.
To achieve this, it is either necessary to invert a bare chi-
ral expansion of some observable (in the case of the O(p2)
LECs) or to use an observable which might be generally
a “dangerous” one. Let us briefly discuss the first case.
Schematically, suppose that some O(p2) LEC G0 (e.g. F

2
0 )

just corresponds to the leading term G(2) of the expansion
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of the observable G. Then we can write the algebraic iden-
tity

G0 =G−G
(4)(G0)−GδG, (25)

where we explicitly point out the dependence of the next-
to-leading term on G0. To convert this expansion and ex-
press G0 by means of the series in G, one substitutes G for
G0 on the right hand side. This defines a new remainder
δG0

G0 =G−G
(4)(G)+G0δG0 , (26)

for which we get

δG0 =−
1−XG
XG

+
1

XG

G(4)(G)

G
. (27)

This could cause an instability of the converted expan-
sion for G0 in terms of G for XG � 1 even if the relative
size of the next-to-leading order G(4)(G)/G is reasonably
small, irrespective of the condition for global convergence
|δG| � 1.
On the other hand, suppose that some O(p4) constant

G1 coincides with the next-to-leading term G
(4). In this

case we have the algebraic identity for G1

G1 =G−G
(2)−GδG (28)

and the remainder here is perfectly under control, provided
G has a globally convergent bare expansion and we do not
re-express G(2) in terms of physical observables (i.e. pro-
vided we treat the O(p2) LECs as free parameters).
From the above simple considerations it follows that in

order to avoid potential problems with the instabilities of
the chiral expansion, which might be present in the three-
flavor χPT in the case of small X(3) and Z(3) (cf. (6) and
(7)), we should [8, 9]:

– carefully define the bare expansion;
– confine ourselves (as far as the bare chiral expansion
is concerned) to the linear space of “good” observ-
ables and keep the “dangerous” observables in the non-
perturbative “resummed” form;
– use rather Σ(3), F0(3) (or X(3) and Z(3)) and r =
2ms/(mu+md) as free parameters

6 instead of express-
ing them in the form of the series in PGB masses and
decay constants;
– eliminate the O(p4) LECs algebraically, using bare ex-
pansions of “good” observables such as F 2P , F

2
PM

2
P .
7

In the next section we shall illustrate the possible sub-
tleties of the first step of this general recipe on the concrete
example8 of the PGB scattering amplitude P1P2→ P3P4.

6 Note that r is related to the “dangerous” observable

2
F 2KM

2
K

F 2πM
2
π
−1 = r+ . . .

7 We will do this for L4–L8 but leave L1–L3 free, and also L7
is a special case, as we see in the following.
8 We shall tacitly assume the case of three light flavors in
what follows.

3 Construction of the bare expansion for the
scattering P1P2→ P3P4

3.1 Chiral expansion of the “good” observables

Let us assume scattering of pseudoscalar mesons P1P2→
P3P4 with massesMPi . The amplitude S(s, t;u) is defined
as

〈P3(k3)P4(k4)out|P1(k1)P2(k2)in〉

= i(2π)4δ(4)(k3+k4−k1−k2)S(s, t;u), (29)

where s, t and u are the usual Mandelstam variables. The
amplitude is related to the “good” observable9

G(s, t;u) =
4∏
i=1

FPiS(s, t;u) (30)

(where FPi are the decay constants) which can directly be
obtained from the (cut) four-point function of the axial
currents. Let us write for G(s, t;u) the following strict chi-
ral expansion in terms of the low energy constants:

G=G(2)+G
(4)
ct +G

(4)
tad+G

(4)
unit+GδG . (31)

GδG accommodates the higher order remainders. Using the
functional method, G can be obtained from the generating
functional

F 40Z[U, v, p, a, s] = F
4
0

∫
d4x(L(2)(U, v, p, a, s)

+L(4)(U, v, p, a, s))

+F 40Z
(4)
loop[U, v, p, a, s]+ . . . (32)

by setting v = s= p= 0, s= 2B0M and expanding in the
fields Φ, where U = exp(iΦ/F0). Following the notation
in [3], we have

Z
(4)
loop[U, v, p, a, s] = Z

(4)
tad[U, v, p, a, s]+Z

(4)
unit[U, v, p, a, s]

=
i

2
ln detD0+

i

4
Tr
(
D−10 δ

)

−
i

4
Tr
(
D−10 δD

−1
0 δ
)
+ . . . (33)

In the above formulae,

Dab0 = δ
ab�+

1

2
B0tr({λ

a, λb}M) , (34)

and M is the quark mass matrix. Note that this rep-
resentation of Z

(4)
loop assumes that the masses running in

the loops are the O(p2) masses rather than the physical
masses. Or, in more detail, provided we start with the chi-
ral expansion of the squared product of the masses and
decay constants

F 2PM
2
P =
(
F 2PM

2
P

)(2)
+
(
F 2PM

2
P

)(4)
+F 2PM

2
P δFMP ,

(35)

9 Strictly speaking, the “good” observables correspond to the
subthreshold parameters derived form G(t, s;u) in an unphysi-
cal point away from singularities.
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the masses in the loops are defined as

o

M2P=

(
F 2PM

2
P

)(2)
F 20

. (36)

Note, however, that this is the first term in a potentially
“dangerous” expansion of the ratio

M2P =
F 2PM

2
P

F 2P
=

(
F 2PM

2
P

)(2)
+
(
F 2PM

2
P

)(4)
+F 2PM

2
P δP

F 20 +(F
2
P )
(4)+F 2P δFP

=
o

M2P + . . . (37)

From this definition of Z
(4)
loop we obtain G

(4) = G
(4)
ct +

G
(4)
tad+G

(4)
unit, which is exactly renormalization scale in-

dependent even for the external momenta off-shell. This
meets the requirement of the renormalization scale inde-
pendence of the remainder δG.
The first two terms of the above strict chiral expansion

for G(s, t;u) have a serious drawback in the sense that the
singularities in the complex stu planes required by unitar-
ity are not placed at the physical thresholds but rather at

points given by the leading order terms
o

MP of the chiral
expansion of the PGB masses. Straightforward substitu-

tion
o

MP→MP in the propagators of the loops, which ap-
parently means merely a redefinition of the remainder δG,
could, however, in general spoil its exact renormalization
scale independence. It is therefore desirable to use the free-
dom in the definition of the remainder more carefully in
order to reconcile both scale independence ofG(4) and uni-
tarity. For this purpose, a useful tool is the matching with
a dispersive representation [8] of the amplitude S(s, t;u)
based on the reconstruction theorem [25, 29].

3.2 Dispersive representation for G(s, t;u)

The above mentioned reconstruction theorem for the PGB
scattering amplitude is based on the basic properties of
unitarity, analyticity and crossing symmetry and provides
us with the most general form of the PGB scattering am-
plitude up to the order O(p6) in terms of dispersive in-
tegrals with known discontinuities. It was first proved for
the case of ππ scattering in [25, 29] and for πK scattering
in [32, 39], and since then it has been intensively used in
various contexts. Here we use the general form of the theo-
rem, a more detailed discussion of which will be presented
elsewhere [40].
For the scattering of pseudoscalar mesons P1P2 →

P3P4, let us denote the s-, t- and u-channel amplitudes by
S(s, t;u), T (s, t;u) and U(s, t;u) and write their partial
wave expansion as

A(s, t;u) = 32π
∞∑
l=0

(2l+1)Al(s)Pl(cos θA) , (38)

where A= S, T, U and

cos θA =
s(t−u)+∆Ai∆Af

λ
1/2
Ai
(s)λ

1/2
Af
(s)

. (39)

Here Al(s) are the partial waves,

λAi,f(s) =
(
s− (MPj +MPk)

2
)(
s− (MPj −MPk)

2
)
(40)

is the triangle function which corresponds to the initial/
final state Ai,f (consisting of the pseudoscalars PjPk) of the
process in the channel A and

∆Ai,f =M
2
Pj
−M2Pk . (41)

According to the theorem, we get the following representa-
tion for the amplitude S(s, t;u):

S(s, t;u) = S(s, t;u)+Sunit(s, t;u)+O(p
8) , (42)

where S(s, t;u) is a third order polynomial with the same
symmetries as the whole amplitude S(s, t;u). The nontriv-
ial analytical properties are incorporated in the unitarity
part Sunit(s, t;u), which can be expressed as

Sunit(s, t;u) = Φ
S(s)+ΦT (t)+ΦU(u)

+ [s(t−u)+∆12∆34]Ψ
S(s)

+ [t(s−u)+∆13∆24]Ψ
T (t)

+ [u(t− s)+∆14∆23]Ψ
U (u) . (43)

In the last expression, ∆ij =M
2
Pi
−M2Pj . The functions

ΦA(s) and ΨA(s) with A = S, T, U are analytic in the
cut complex plane with the right hand cut from τA =
mini,j(MPi +MPj)

2 (where PiPj are the possible interme-
diate states in the given channel A) to infinity with discon-
tinuities given by

discΦA(s) = 32πθ(s− τA)discA0(s) , (44)

discΨA(s) = 96πθ(s− τA)disc
A1(s)

λ
1/2
Ai
(s)λ

1/2
Af
(s)
. (45)

HereA0(s) andA1(s) are the corresponding l= 0, 1 partial
waves.
Consequently, once the right hand sides of (44) and

(45) are known, the unitarity part Sunit(s, t;u) of the am-
plitude can be uniquely reconstructed to O(p6) up to the
polynomial, which encompasses subtraction polynomials
for the dispersion integrals.
Let us now assume that the chiral expansion of the am-

plitudes can be cast in the form:

A(s, t;u) =A(2)(s, t;u)+A(4)(s, t;u)+AδA , (46)

A(n)(s, t;u) = 32π
∞∑
l=0

(2l+1)A
(n)
l (s)Pl(cos θs(t)) .

(47)

Starting from the O(p2) amplitudes, we can use the two
particle partial wave unitarity to get the discontinuity of
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the partial waves A
(4)
l (s) along the right hand cut:

10

discA
(4)
l (s) =

∑
ij

2

zij

λ
1/2
ij (s)

s
A
(2)ij→Af
l (s)A

(2)ij→Ai
l (s)∗

+O(p6) . (48)

Here zij = 1, 2 is a symmetry factor taking into account the
possibility of identical particles in the intermediate state
ij. Inserting this into the dispersive integrals we easily11

get a minimal form for the O(p4) unitarity corrections in
terms of the functions Φ(4)A(s) and Ψ (4)A(s) reconstructed
from the O(p2) amplitudes

Φ(4)A(s) = (32π)2
∑
ij

1

zij
J ij(s)A

(2)Ai→ij
0 (s)A

(2)ij→Af
0 (s)∗,

(49)

Ψ (4)A(s) =
(96π)2

3

∑
ij

1

zij
J ij(s)

×
A
(2)Ai→ij
1 (s)A

(2)ij→Af
1 (s)∗

λ
1/2
Ai
(s)λ

1/2
Af
(s)

. (50)

J ij(s) = J
r
ij(s)−J

r
ij(0)− sJ

r′

ij (s) corresponds to the twice
subtracted scalar bubble with internal line massesMPi,Pj .
Provided ∆Ai = 0 or ∆Af = 0, which will be our case, it
can be shown that we only need one subtraction, J ij(s) =

Jrij(s)−J
r
ij(0) instead of J ij(s). The explicit form of the

function J ij(s) is given in the Appendix D.
The above formulae can be used to write a disper-

sive representation of the “good” observable G(s, t;u) =∏4
i=1 FPiS(s, t;u) to the next-to-leading order in the form

G(s, t;u) = G(s, t;u)+Gunit(s, t;u) , (51)

where G(s, t;u) is the polynomial part, and the unitarity
corrections up to O(p6) are included in

Gunit(s, t;u) = φ
S(s)+φT (t)+φU(u)

+ [s(t−u)+∆12∆23]ψ
S(s)

+ [t(s−u)+∆13∆24]ψ
T (t)

+ [u(t− s)+∆14∆23]ψ
U (u) . (52)

Our goal is to write down a representation of φ(4)A and
ψ(4)A, which, one may notice, are quantities distinct from
Φ(4)A and Ψ (4)A, analogous to (49) and (50). Note, how-
ever, that while the relation of G(s, t;u) and S(s, t;u) is
unambiguously fixed to all orders by (30), the amplitude
can be defined order by order in various ways. For example,
for the “good” observable G, the leading order piece G(2)

of its strict chiral expansion is fixed by the lowest order

10 It can be shown that more than two particle intermediate

states yield a contribution of the order O(p8) and higher.
11 Note that A(2)(s, t;u) are real polynomials of the first order
in s, t and u.

Lagrangian L(2), but the corresponding O(p2) piece of the
amplitude S can be related in various ways. Similarly, the
same is true order by order, where the amplitude at the
given order can be defined up to higher order corrections.
The most straightforward way is to write a safe expan-

sion for S(s, t;u) in the form

S(s, t;u) =

(
4∏
i=1

FPi

)−1

× (G(2)(s, t;u)+G(4)(s, t;u)+GδG) ,

(53)

with physical values of FPi , thus satisfying the relation (30)
order by order:

S(n)(s, t;u) =

(
4∏
i=1

FPi

)−1
G(n)(s, t;u) . (54)

As we shall see, the minimal modification of the form de-
rived from the generating functional is obtained by using
an alternative, potentially “dangerous” expansion:

S(s, t;u) =

(
4∏
i=1

FPi

)−1
G(s, t;u)

=

⎛
⎜⎝
4∏
i=1

F0

⎛
⎜⎝1+ 1

2

(
F 2Pi

)(4)
F 20

+ . . .

⎞
⎟⎠
⎞
⎟⎠
−1

× (G(2)(s, t;u)+G(4)(s, t;u)+ . . . )

= F−40 G
(2)(s, t;u)−

1

2
F−60 G

(2)(s, t;u)

×
4∑
i=1

(
F 2Pi

)(4)
+F−40 G

(4)(s, t;u)+ . . . ,

(55)

which defines

S̃(2)(s, t;u) = F−40 G
(2)(s, t;u) , (56)

S̃(4)(s, t;u) = F−40 G
(4)(s, t;u)

−
1

2
F−60 G

(2)(s, t;u)
4∑
i=1

(F 2Pi)
(4) . (57)

The representation of φ(4)A and ψ(4)A is therefore not
unique. According to our definitions of the amplitude we
get either (we assume a partial wave expansion ofG(s, t;u)
analogous to (38))

φ(4)A(s) = (32π)2
∑
ij

1

zij

J ij(s)

F 2PiF
2
Pj

×G
(2)Ai→ij
0 (s)G

(2)ij→Af
0 (s)∗ , (58)
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ψ(4)A(s) =
(96π)2

3

∑
ij

1

zij

J ij(s)

F 2PiF
2
Pj

×
G
(2)Ai→ij
1 (s)G

(2)ij→Af
1 (s)∗

λ
1/2
Ai
(s)λ

1/2
Af
(s)

, (59)

corresponding to the definition (54) or

φ̃(4)A(s) = (32π)2F−40
∑
ij

1

zij
J ij(s)

×G(2)Ai→ij0 (s)G
(2)ij→Af
0 (s)∗ , (60)

ψ̃(4)A(s) =
(96π)2

3
F−40

∑
ij

1

zij
J ij(s)

×
G
(2)Ai→ij
1 (s)G

(2)ij→Af
1 (s)∗

λ
1/2
Ai
(s)λ

1/2
Af
(s)

, (61)

when reconstructing the bare expansion of G from the
“dangerous” expansion (55) and using the definitions (56)
and (57) for the O(p2) and O(p4) amplitudes.

3.3 Matching the strict chiral expansion to the
dispersive representation

The dispersive representation (51) can now be matched to
(31). As we have mentioned above, the positions of the cuts
in (31) and (51) are not the same; in the former case they
correspond to the O(p2) masses (36), which ensures renor-
malization scale independence, while in the latter case they
are determined by the physical ones, as required by the
unitarity conditions. In order to reconcile both these re-
quirements, one may proceed as follows (c.f. also [8]).
In (31), the nonanalytic terms are generally of the form

P (s)Jrij(s), where J
r
ij(s) is the renormalized scalar bub-

ble defined in Appendix D, and P (s) is some second order
polynomial. As a first step, one rewrites these expres-

sions in terms of J ij(s), writing J
r
ij(s) = J

r
ij(0)+ sJ

′
ij(0)+

J ij(s). This adjustment allows us to split G uniquely into
a polynomial partGpol and a nonanalytic partGcut, which
incorporates the unitarity cuts

G(s, t;u) =Gpol(s, t;u)+Gcut(s, t;u)+GδG , (62)

where

Gpol(s, t;u) = (G(s, t;u)−GδG)|
Jij=Jij=0

. (63)

Both parts are now renormalization scale independent.
As a second step, we replace the Gcut(s, t;u) with

Gunit(s, t;u) from (51). This means that we write

G(s, t;u) =Gpol(s, t;u)+Gunit(s, t;u)+Gδ
′

G , (64)

where δ′G is a new remainder defined by this equation.
According to naive chiral power counting, Gcut(s, t;u)−
Gunit(s, t;u) =O(p6).
The third step, not necessary from the point of view of

preserving unitarity and renormalization scale invariance,

consists of a further modification of Gpol(s, t;u) by means

of replacement of the O(p2) masses
o

M2P in J
r
ij(0) with the

physical masses M2P . This replacement does not spoil the
renormalization scale independence of the Gpol(s, t;u) and
corresponds to the convention introduced in [8, 9]. This
again means a redefinition of the remainders δ′G, i.e. re-
shuffling of the terms of the next-to-next-to-leading order.
Note that the origin of the Jrij(0) in one loop generat-

ing functional (33) is twofold: they may stem either from

the tadpole part Z
(4)
tad or from the unitarity corrections

Z
(4)
unit. It was argued in [9] that in the former case the above
mentioned replacement does not necessarilymodify the nu-
merical value of the remainders much. The reason should
be that the chiral logs appear only in the combination

µP ∝
o

M2P ln(
o

M2P /µ
2). The replacement here means

o

M2P ln

(
o

M2P /µ
2

)
→

o

M2P ln
(
M2P /µ

2
)
. (65)

Because
o

M2P∝ Y = X/Z, the difference should therefore

either be small for Y ∼ 1 (where
o

M2P∼M
2
P ) or the contri-

bution of µP itself is tiny for Y → 0.
On the other hand, the logs from Z

(4)
unit do not gener-

ally come with such a prefactor. Therefore, with the re-

placement
o

M2P→M
2
P inside J

r
ij(0), one might create large

differences between the “old” and “new” remainders due
to the enhancement of the contributions of chiral logs for
small Y . However, without the replacement inside the chi-
ral logs of this type we could expect an unphysical increase
(and irregularities) of the observables for Y → 0. Also, here
the replacement is natural physically; remember that the
matching with the dispersive representation consists es-
sentially of an analogous replacement within the unitary
corrections. Let us also note that the splitting of the gen-
erating functional into the tadpole and unitarity part is
not unique (it depends e.g. on the parametrization of the
fluctuations around the classical solution of the O(p2) field
equations in the functional integral), though the sum must
be independent on this and therefore it is more consistent
to use the same rule for both.12 Nevertheless, it could be
worthwhile to test the differences between various treat-
ments of the chiral logs numerically (see Sect. 6.2).
The resulting bare expansion (64) now not only meets

the requirement of the exact scale independence of the re-
mainder δ′G, it also has the correct physical location of the
unitarity cuts. Of course, we could achieve the latter prop-
erty simply by inserting physical masses into the functions

12 Also notice that the offending Y dependence of the chiral
logs with O(p2) masses inside always comes in the combina-
tion Y/µ2 where µ is the renormalization scale. Provided we
were able to reparametrize the bare expansion in such a way
that all the runningO(p4) constants were completely expressed
in terms of the physical observables, the explicit independence
on µ would at the same time guarantee elimination of the ir-
regularities for Y → 0. Such a treatment has to include the
reparametrization of L1–L3, which is, however, beyond the
scope of our paper.
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J ij(s) in Gcut(s, t;u). The replacement Gcut(s, t;u)→
Gunit(s, t;u) has, however, another advantage. Namely,
using the prescription (58) and (59), the corresponding
amplitude, written in the form (without any expansion of
the denominator)

S(s, t;u) =
G(s, t;u)∏4
i=1 FPi

(66)

satisfies the relations of perturbative unitarity (with S(2)

and S(4) given by (54))

discS
(4)
l (s) =

∑
ij

2

zij

λ
1/2
ij (s)

s
S
(2)ij→Af
l (s)S

(2)ij→Ai
l (s)∗ ,

(67)

exactly (i.e. not only modulo the next-to-next-to-leading
correction), which may sometimes be technically useful
(e.g. for the unitarization by means of the inverse ampli-
tude method [41]). The same is true using the prescription
(60) and (61) with S̃(2) and S̃(4) given by (56) and (57). As
we shall see below, the latter prescription gives a minimal
modification of the strict expansion (31) compatible with
exact perturbative unitarity.

4 General properties of πη scattering
amplitude

4.1 Basic notation

Let us denote the s- and u-channel amplitude in the isospin
conservation limit by

〈
πb(pb)η(q)out|π

a(pa)η(p)in
〉
= i(2π)4δ(Pf −Pi)

× δabS(s, t;u) (68)

and the crossed amplitude in the t-channel by

〈
η(p)η(q)out|π

a(pa)πb(pb)in
〉
= i(2π)4δ(Pf −Pi)

× δabT (s, t;u) . (69)

Crossing and Bose symmetries then yield

T (s, t;u) = S(t, s;u) ,

S(s, t;u) = S(u, t; s) ,

T (s, t;u) = T (s, u; t) . (70)

Writing the partial wave expansion as

S(s, t;u) = 32π
∞∑
l=0

(2l+1)Pl(cos θs)Sl(s) ,

cos θs =
(t−u)s+∆2ηπ
ληπ(s)

, (71)

the scattering lengths al and phase shifts δl(s) are given by

ReSl(s) =

√
s

4
P 2l(al+O(P

2))

for P → 0 , s→ (Mη+Mπ)
2

δl(s) = arctan

(
4P
√
s
ReSl(s)

)
, (72)

where P = λ
1/2
ηπ (s)/2

√
s is the CMSmomentum. That is, in

units of (pion Compton wavelength)2l+1, we have

al =M
2l+1
π lim

P→0

4
√
sP 2l

ReAl(s) . (73)

Let us also define the subthreshold parameters cij in terms
of the expansion of the amplitude in the point of analyticity
t= 0, s= u=Σηπ =M

2
η +M

2
π:

S(s, t;u) =
∑
i,j

cijt
iν2j , (74)

where

ν =
s−u

4Mη
=
2s+ t−2Σηπ
4Mη

. (75)

The dimension cij is dim[cij ] = mass
−2i−2j , we shall refer

to the dimensionless numbers cijM
2i+2j
π below. Let us note

that in the limit mu =md = 0 we have two Adler zeros, at
pa = 0 and pb = 0, which implies the following SU(2)L×
SU(2)R theorem:

lim
mu=md→0

c00 = 0 . (76)

We can also quote the low energy current algebra result [42]

S(s, t;u) =
M2π
3F 2η

, (77)

which is in agreement with (76).

4.2 Dispersive representation

As a result of the symmetry properties of the amplitudes,
the dispersive representation to the next-to-leading order
(52) for Gπη(s, t;u) = F

2
πF
2
η S(s, t;u) simplifies, namely

φS = φU ≡ φ and ψS = ψU ≡ ψ. The intermediate states
in (58) and (59) are13 πη and KK in the s- and u-
channels and ππ, ηη and KK in the t-channel. This im-
plies ψ(s) = O(p6), because the P -waves in the s-channel
start at O(p4) due to the low energy theorem (77) for the
πη→ πη amplitude and as a result of charge conjugation
invariance of the πη→KK amplitude. Moreover, ψT = 0,
because the partial wave decomposition of the t-channel
amplitude T (s, t;u) contains only even partial waves due to
Bose symmetry and charge conjugation. We therefore get

Gπη(s, t;u) =Gπη,pol(s, t;u)+Gπη,unit(s, t;u)+O(p
6) ,
(78)

13 Here we assume isospin conservation.
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where the polynomial part has the following general form:

Gπη,pol(s, t;u) = α+βt+γt
2+ω(s−u)2 . (79)

Note that the parameters α, . . . , ω are related to the ex-
pansion of the Green function Gπη(s, t;u) at the point
of analyticity t = 0, s = u = Σηπ =M

2
η +M

2
π and there-

fore they represent “good observables” according to our
classification.
The dispersive part is

Gπη,unit(s, t;u) = φ
T (t)+φ(s)+φ(u) , (80)

where φT (t) and φ(s) are given by (58). A complete

list of relevant leading order contributions G
(2)12→ij
0,1 and

G
(2)ij→34
0,1 can be found in Appendix C; here we give the
resulting expressions (transcription to the convention (60)
and (61) is straightforward):

φ(s) = F 40

{
1

9

o

M4π
Jπη(s)

F 2πF
2
η

+
3

8

[(
s−
1

3
M2η −

1

3
M2π−

2

3
M2K

)

−
1

3

(
2
o

M2K −
o

M2π −
o

M2η

)]2
JKK(s)

F 4K

}
,

φT (s) = F 40

{
1

3

o

M2π

[(
s−
4

3
M2π

)
+
5

6

o

M2π

]
Jππ(s)

F 4π

−
1

18

o

M2π

(
o

M2π −4
o

M2η

)
Jηη(s)

F 4η

+
1

8

[(
s−
2

3
M2π−

2

3
M2K

)
+
2

3

( o

M2K +
o

M2π

)]

×

[(
3s−2M2K−2M

2
η

)
+

(
2
o

M2η −
2

3

o

M2K

)]

×
JKK(s)

F 4K

}
. (81)

In terms of these functions, we have (notice that φT (0) = 0)

a0 =
1

8πF 2ηF
2
π

Mπ

(Mπ+Mη)

(
α+16ωM2ηM

2
π

+φ
(
(Mπ+Mη)

2
)
+φ
(
(Mη−Mπ)

2
))

a1 =
1

12πF 2ηF
2
π

M3π
(Mπ+Mη)

(
β+8ωMηMπ

+φT
′
(0)−φ′

(
(Mη−Mπ)

2
))

(82)

and

c00 =
1

F 2ηF
2
π

(α+2φ(Σηπ)) ,

c10 =
1

F 2ηF
2
π

(
β+φT

′
(0)−φ′(Σηπ)

)
,

c20 =
1

F 2ηF
2
π

(
γ+
1

2
φT
′′
(0)+

1

4
φ′′(Σηπ)

)
,

c01 =
16M2η
F 2ηF

2
π

(
ω+
1

4
φ′′(Σηπ)

)
. (83)

While the scattering lengths, being related to the value
of the amplitude at the threshold, are not candidates for
“good observables”, the situation is a little bit more subtle
in the case of the subthreshold parameters. Provided the
η decay constant were known from experiments as accu-
rately as Fπ , then (similarly to α, β, . . . ) also the cij could
be treated as “good observables”. However, this is not the
case, and we should rather use a chiral expansion of Fη in
the above formulae. Therefore, the subthreshold parame-
ters are typical examples of the dangerous ratios, which
should be treated with care.

4.3 Bare expansion for G(s, t;u)

For a strict expansion in terms of LECs (i.e. without any
reparametrization in terms of physical observables) de-
rived from (32) and (33), we have confirmed the results
of [38] by independent calculation. The O(p4) expansion
can be written in the form

Gπη =G
(2)+G

(4)
ct +G

(4)
tad+G

(4)
unit+GδG , (84)

where

G(2)(s, t;u) =
F 20
3

o

M2π ,

G
(4)
ct (s, t;u) = 8

(
Lr1(µ)+

1

6
Lr3(µ)

)(
t−2M2π

) (
t−2M2η

)

+4

(
Lr2(µ)+

1

3
Lr3(µ)

)

×
[(
s−M2π−M

2
η

)2
+
(
u−M2π−M

2
η

)2]

+8Lr4(µ)

[(
t−2M2π

) o

M2η +
(
t−2M2η

) o

M2π

]

−
8

3
Lr5(µ)

(
M2π+M

2
η

) o

M2π +8L
r
6(µ)

o

M2π

×

( o

M2π +5
o

M2η

)
+32Lr7(µ)

( o

M2π −
o

M
2

η

)

×
o

M2π +
64

3
Lr8(µ)

o

M4π ,

G
(4)
tad(s, t;u) =−

F 20
3

o

M2π

(
3µπ+2µK+

1

3
µη

)
,

G
(4)
unit(s, t;u) =

1

9

o

M4π
[
Jrπη(s)+J

r
πη(u)

]

+
3

8

[
s−M2π−M

2
η +
2

3

o

M2π

]2
JrKK(s)

+
3

8

[
u−M2π−M

2
η +
2

3

o

M2π

]2
JrKK(u)

+
1

3

o

M2π

[
t−2M2π+

3

2

o

M2π

]
Jrππ(t)

+
2

9

o

M2π

( o

M2η −
1

4

o

M2π

)
Jrηη(t)

+
1

8

[
t−2M2π+2

o

M2π

]

×

[
3t−6M2η +4

o

M2η −
2

3

o

M2π

]
JrKK(t) (85)
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are the O(p2), counterterm, tadpole and unitarity contri-
butions, respectively. In the above formulae, the masses
within the loop functions JrPQ(t) are the O(p

2) masses

o

M2π= 2B0m̂ ,
o

M2K=B0m̂(r+1) ,
o

M2η=
2

3
B0m̂(2r+1) .

(86)

The chiral logs µP can be expressed using J
r
PP (0):

µP =

o

M2P
32π2F 20

ln

o

M2P
µ2
=−

o

M2P
2F 20

(
JrPP (0)+

1

16π2

)
.

(87)

Written in such a form, the sum G
(4)
ct +G

(4)
tad+G

(4)
unit is

exactly renormalization scheme independent by construc-
tion. Let us now proceed as described in the previous sec-
tion and write the bare expansion ofG(s, t;u) in the form

Gπη(s, t;u) =Gπη,pol(s, t;u)+Gπη,unit(s, t;u)+Gδ
′

G .
(88)

Writing Jrij(s) = J
r
ij(0)+J ij(s) in (85), we get the renor-

malization scale independent polynomial part:

Gπη,pol(s, t;u) =G
(2)(s, t;u)+G

(4)
ct (s, t;u)+G

(4)
tad(s, t;u)

+
1

3

o

M2π

[
t−2M2π+

3

2

o

M2π

]
Jrππ(0)

+
2

9

o

M4π J
r
πη(0)+

2

9

o

M2π

(
o

M2η −
1

4

o

M2π

)

×Jrηη(0)+
3

8

{[
s−M2π−M

2
η +
2

3

o

M2π

]2

+

[
u−M2π−M

2
η +
2

3

o

M2π

]2

+

[
t−2M2π+2

o

M2π

]

×

[
t−2M2η +

4

3

o

M2η −
2

9

o

M2π

]}
JrKK(0) .

(89)

Comparing this with the general form (79) of Gπη,pol
(s, t;u), we get for the bare expansions of the parameters
α−ω the following manifestly renormalization scale inde-
pendent form:

α=
1

3
F 20

o

M2π +
1

96π2

o

M2π

(
7

2

o

M2π +
11

6

o

M2η

)

+4

[
8

(
Lr1(µ)+

1

6
Lr3(µ)

)
+
3

8
JrKK(0)

]
M2πM

2
η

− [16Lr4(µ)+J
r
KK(0)]M

2
π

o

M2η

−

[
16Lr4(µ)+

8

3
Lr5(µ)+

3

2
JrKK(0)

]
M2η

o

M2π

−

[
8

3
Lr5(µ)−

1

6
JrKK(0)+

2

3
Jrππ(0)

]
M2π

o

M2π

+

[
40Lr6(µ)+

5

18
Jrηη(0)+

5

4
JrKK(0)

]
o

M2π

o

M2η

+32Lr7(µ)
o

M2π (
o

M2π −
o

M2η )

+

[
8Lr6(µ)+

64

3
Lr8(µ)+J

r
ππ(0)+

2

9
Jrπη(0)−

1

18
Jrηη(0)

+
1

4
JrKK(0)

]
o

M4π +
1

3
F 2πM

2
πδα , (90)

β =−2Σηπ

[
8(Lr1(µ)+

1

6
Lr3(µ))+

3

8
JrKK(0)

]

+

[
8Lr4(µ)

(
o

M2η +
o

M2π

)
+
1

2
JrKK(0)

o

M2η

+
1

3

(
Jrππ(0)+

1

2
JrKK(0)

)
o

M2π

]
+βδβ , (91)

γ =

[
8

(
Lr1(µ)+

1

6
Lr3(µ)

)
+
3

8
JrKK(0)

]

+

[
2

(
Lr2(µ)+

1

3
Lr3(µ)

)
+
3

16
JrKK(0)

]
+γδγ , (92)

ω =

[
2

(
Lr2(µ)+

1

3
Lr3(µ)

)
+
3

16
JrKK(0)

]
+ωδω . (93)

5 Reparametrization of the bare expansion

Let us now discuss the various possibilities of the re-
parametrization of the bare expansion.

5.1 πη scattering within the standard chiral
perturbation theory to O(p4)

The standard way of dealing with the chiral expansion con-
sists of two “dangerous” steps. The first one involves using
the inverted expansions of the type (26) in order to express
the amplitude in terms of the masses and decay constants
instead of the parameters B0m̂, F0 and r =ms/m̂ of the
O(p2) chiral Lagrangian. Here one encounters an ambigu-
ity connected with different possibilities of how to choose
the observable G in (26), the chiral expansion of which
starts with the desired O(p2) parameterG0.
Let us fix this ambiguity by using the expansions of F 2π ,

M2π andM
2
K , inverting of which leads to

14

14 Instead of M2K we could use the chiral expansion of M
2
η to

obtain

r = r̃2 =
3

2

(
M2η

M2π
−
1

3

)

or even F 2KM
2
K to get

r = r∗2 = 2
F 2KM

2
K

F 2πM
2
π
−1 .

The latter choice, formally as good as the previous two, could

also involve the redefinition of the loop masses into
o

M2P=
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F 20 = F
2
π (1+4µπ+2µK)

−8M2π (L
r
4(µ)(2+ r)+L

r
5(µ)) , (94)

2B0m̂=M
2
π

[
1−µπ+

1

3
µη−

8M2π
F 2π

(
2Lr8(µ)

+2(2+ r)Lr6(µ)−L
r
5(µ)− (2+ r)L

r
4(µ)
)]
,

(95)

r = r2 =
2M2K
M2π

−1+O(p2) . (96)

Inserting the inverted expansions (94)–(96) into (90) and
(91) and keeping terms up to the order O(p4) we get

α=
1

3
F 2πM

2
π+
16

3
M2πM

2
ηL
r
3(µ)−

64

3
Lr7(µ)M

4
π(r2−1)

+M2πM
2
η

[
32Lr1(µ)−16L

r
4(µ)−

8

3
Lr5(µ)

]

+
1

3
(2r2+1)M

4
π

[
32Lr6(µ)−16L

r
4(µ)+

2

9
Jrηη(0)

]

+M4π

[
−
8

3
Lr5(µ)+16L

r
8(µ)−

1

6
Jrππ(0)+

2

9
Jrπη(0)

−
1

18
Jrηη(0)+

1

3
JrKK(0)

]
+αδstα , (97)

β =−2Σηπ

[
8

(
Lr1(µ)+

1

6
Lr3(µ)

)
+
3

8
JrKK(0)

]

+
1

3
M2π [16L

r
4(µ)(r2+2)+J

r
KK(0)(r2+1)+J

r
ππ(0)]

+βδstβ , (98)

with the new remainders δstα and δ
st
β , which might be, how-

ever, out of control as we have already discussed. In fact,
this first step involves three “unsafe” manipulations from
the point of view of resummed χPT: using “dangerous” ex-
pansions for the masses as a starting point, the inversion
and finally the negligence of all higher order terms gener-
ated by this procedure after the insertion.
Use of physical masses inside the chiral logarithms is

understood. Higher order LECs are then fitted by using
additional experimental input; no parameters are there-
fore left free. Also note that (96) effectively implements the
classical Gell-Mann–Okubo formula:

3M2η −4M
2
K+M

2
π = 0 . (99)

This insures renormalization scale independence. We, how-
ever, leave Mη at its physical value in cases when it was
produced by on-shell mass on the outer legs or inside chi-
ral logarithms, which is compatible with the requirement of
scale independence.

F 2PM
2
P /F

2
π instead of the simple form

o

M2P=M
2
P as in the case

of the other standard reparametrizations. Even then, however,
it suffers from numerically large O(p4) corrections, which could
produce instabilities of the reparametrization based on this
observable.

The second step is connected to the fact that the am-
plitude is used in standard χPT rather than G(s, t;u). As
was shown in Sect. 3.2, the expansion of the amplitude can
be organized in various ways, of which only (54) is consid-
ered safe in the resummed approach. On the other hand,
from the standard point of view it often seems more advan-
tageous to use (56) and (57), as together with (94) it leads
to only the experimentally very well known pion decay con-
stant being present in the formulae. This can be seen in the
case of Fη, which is experimentally poorly known due to η–
η′ mixing [43], and thus, if it is kept at its physical value
as was done in [38], a significant uncertainty is introduced
into the results. As the normalization (56) and (57) is used
more often in NLO SχPT, we will adhere to this view and
perform this second step by expanding the kaon and eta
decay constants from the denominators and subsequently
cutting off the higher orders.
Using therefore the prescription (60) and (61), the dis-

persive part of the O(p4) amplitude (81) simplifies using
the reparametrization recipe described above:

φ(s) =
1

9
M4πJπη(s)+

3

8

×

[(
s−
1

3
M2η −

1

3
M2π−

2

3
M2K

)
−
1

9
M2π(r2−1)

]2

×JKK(s) ,

φT (s) =
1

3
M2π

(
s−
1

2
M2π

)
Jππ(s)+

1

54
M4π(8r2+1)Jηη(s)

+
1

8

[(
s−
2

3
M2π−

2

3
M2K

)
+
1

3
M2π(r2+3)

]

×

[(
3s−2M2K−2M

2
η

)
+
1

3
M2π(3r2+1)

]
JKK(s) .

(100)

The second step also propagates itself to the case of the
subthreshold parameters cij and the scattering lengths ai,
where it consists of the expansion of F 2η in the denomina-
tor of (83) and (82). This step could in principle produce an
uncontrollable contribution to the remainders as well.

5.2 Resummation of the vacuum fluctuation

In order to preserve global convergence, as was discussed,
in the context of resummed χPT we are not allowed to per-
form “dangerous” inverted expansions and thus to express

the O(p2) masses
o

MP and the decay constant F0 in terms
of the physical ones in the way it is common within the
standard χPT calculations sketched above. Instead of this,
the O(p2) LECs are left free, or more precisely, rewritten
using parameters directly related to the order parameters
of the chiral symmetry breaking:15

r =
ms

m̂
, X =

o

M2π F
2
0

M2πF
2
π

, Z =
F 20
F 2π
. (101)

15 Here we omit the explicit dependence of X, Y and Z on Nf
keeping in mind that Nf = 3 in what follows.
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The bare expansions for the masses F 2PM
2
P and decay

constants F 2P are used to reparametrize the NLO LECs
L4–L8. As the dependence is linear, this can be done in
a purely non-perturbative algebraic way by introduction
of an unknown higher order remainder to each observable
used. The relevant formulae for L4–L8 can be found in
Appendix E.
As the masses and decay constants do not depend on

L1, , L2 and L3, bare expansions of some additional, exper-
imentally well known observables is needed for these LECs.
This is, however, even if highly desirable, out of the scope
of our article, and we make a shortcut and use the standard
tabular values for these constants. We will make an analy-
sis of the sensitivity of our results to a change in the value
of L1–L3 in the next section, devoted to numerical results.
For the resulting expression for the parameters α and

β, we use the following abbreviation for some repeatedly
occurring combinations:

r∗2 = 2
F 2KM

2
K

F 2πM
2
π

−1 , (102)

ε(r) = 2
r∗2− r

r2−1
, (103)

η(r) =
2

r−1

(
F 2K
F 2π
−1

)
, (104)

∆GMO =
3F 2ηM

2
η +F

2
πM

2
π−4F

2
KM

2
K

F 2πM
2
π

, (105)

in terms of which we get

α=
1

3
XF 2πM

2
π+
1

3
F 2πM

2
π(1−X)

5r+4

r+2

+
1

3
F 2πM

2
πε(r)r

2r+1

r+2
−
2

3

F 2πM
2
π

r−1
∆GMO

+2
F 2π
r+2

(Z−1)

(
1

3
M2π(2r+1)+M

2
η

)

+
F 2π
r+2

η(r)

(
rM2π−

1

3
(r−4)M2η

)

+
1

96π2
X

Z
M4π(4r+5)+

3

32π2
X

Z
M2πM

2
η

−
1

864π2

(
X

Z

)2
M4π(44r+67)

−
M4π

2(r+2)(r−1)

X

Z

[
Jrηη(0)(2r+1)+2J

r
KK(0)r

−Jrππ(0)(4r+1)
]
r

+
M2πM

2
η

6(r+2)(r−1)

X

Z

[
Jrηη(0)(2r+1)(r−4)

+Jrππ(0)(19r−4)−2J
r
KK(0)(r

2+6r−4)
]

+
M4π

18(r+2)(r−1)

(
X

Z

)2 [
Jrηη(0)(5r

2−10r−4)

+6JrKK(0)(3r
2−2r−4)+4Jrπη(0)(r

2+ r−2)

−9Jrππ(0)(3r
2−2r−4)

]

+4

[
8

(
Lr1(µ)+

1

6
Lr3(µ)

)
+
3

8
JrKK(0)

]
M2πM

2
η

+
1

3
F 2πM

2
πδ
′
α , (106)

β =
2

3
F 2π (1−Z−η(r))

+
1

3

M2π
r−1

X

Z

[
Jrηη(0)(2r+1)+J

r
KK(0)(r+1)

−Jrππ(0)(3r+2)−
1

16π2
(r+2)(r−1)

]

−2Σηπ[8

(
Lr1(µ)+

1

6
Lr3(µ)

)
+
3

8
JrKK(0)]+βδ

′
β .

(107)

The new primed remainders are the following functions of
the original remainders entering the game:

δ′α = δα−
5r+4

r+2
δFπMπ +

2

r+2

(
(2r+1)+

3M2η
M2π

)
δFπ

−
2

(r+2)(r−1)

(
3r− (r−4)

M2η

M2π

)(
F 2K
F 2π
δFK − δFπ

)

−
2r(2r+1)

(r+2)(r2−1)

(
2
F 2KM

2
K

F 2πM
2
π

δFKMK − (r+1)δFπMπ

)

+
2

r−1

(
3
F 2ηM

2
η

F 2πM
2
π

δFηMη + δFπMπ

−4
F 2KM

2
K

F 2πM
2
π

δFKMK

)
, (108)

δ′β = δβ+
2

3

2F 2KδFK − (r+1)F
2
πδFπ

β(r−1)
. (109)

This is an alternative to the first step used in the standard
approach to χPT. Because the value of Fη is not very well
known, we make in a sense a step parallel to the second
step as well, i.e. using the chiral expansion for F 2η in the de-
nominator of (81)–(83). It involves the reparametrization
in terms of X, Z and r (see Appendix B for details), but,
contrary to the standard case, the denominator is not fur-
ther expanded and the result is given in a non-perturbative
resummed form of the ratio of two “safe” expansions.

5.3 πη scattering within the generalized chiral
perturbation theory to O(p4) – the bare
expansion of G(s, t;u)

In analogy with (85), the strict chiral expansion for
G(s, t;u) within the generalized χPT can be straightfor-
wardly obtained by using the Lagrangian summarized in
Appendix F, where we use the traditional notation for the
LECs. The result has the following structure:

Gπη = G̃
(2)+ G̃(3)+ G̃

(4)
ct + G̃

(4)
tad+ G̃

(4)
unit+Gδ

GχPT
G ,

(110)
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where16

G̃(2)(s, t;u) =
1

3
F 20
[
M̃2π+4m̂

2
(
3A0−4(r−1)Z

P
0

+2(2r+1)ZS0
)]
,

G̃(3)(s, t;u) =
1

3
F 20
[
−2m̂

(
6M2η +M

2
π(2+4r)−2(2+ r)t

)
×ξ̃−2m̂Σπηξ

+ 81m̂3ρ1+ m̂
3ρ2+(80−64r−16r

2)m̂3ρ3

+ (100+64r+34r2)m̂3ρ4+(2+ r
2)m̂3ρ5

+ (96−96r)m̂3ρ6+(144+288r+108r
2)

×m̂3ρ7
]
,

G̃
(4)
ct (s, t;u) = 8(L1+

1

6
L3)
(
t−2M2π

) (
t−2M2η

)

+4

(
L2+

1

3
L3

)

×
[(
s−M2π−M

2
η

)2
+
(
u−M2π−M

2
η

)2]

+
8

3
m̂2F 20

{
− (B1−B2)Σπη

+2DPM2π(r−1)−2C
P
1 M

2
η (r−1)

+CS1 (2r+1)t

−DS
[
1

2
Σπη(5r+4)− (2r+1)t

]

−2B4
[
3M2η +M

2
π(2r

2+1)− (r2+2)t
]}

+
1

3
m̂4F 20

[
256E1+16E2

+FP1 (256−256r
2)+FS4 (32+16r

2)

+FS1 (256+320r
2)

+FSP5 (192−320r+160r
2−32r3)

+FP2 (240−216r−24r
3)

+FSP6 (32−32r+16r
2−16r3)

+FP3 (16−8r−8r
3)+FS3 (16+10r+10r

3)

+FSS6 (32+40r+16r
2+20r3)

+FSP7 (384−160r−256r
2+32r3)

+FS2 (400+234r+74r
3)

+FSS5 (576+720r+480r
2+168r3)

]
,

G̃
(4)
tad(s, t;u) =−

1

9
F 20
[
2m̂B0(µη+6µK+9µπ)

+8A0m̂
2(8µη+3µK(r+8)+48µπ)

+4ZS0 m̂
2(µη(16+41r)+µK(48+90r)

+µπ(96+45r))−16Z
P
0 m̂

2(2µη(5r−2)

+3µK(6r−4)+3µπ(3r−8))
]
,

G̃
(4)
unit(s, t;u) =

1

9

[
M̃2π+4m̂

2
(
3A0−4(r−1)Z

P
0

+2(2r+1)ZS0
)]2 [
Jrπη(s)+J

r
πη(u)

]
16 All the LECs in the following formulae are the renormalized
LECs at scale µ. We have omitted the explicit notation of this
in order to simplify the expressions.

+
3

8

[
s−M2π−M

2
η +
2

3
M̃2π−

8

3
(r−1)

× m̂2
(
A0+2Z

P
0

) ]2
JrKK(s)

+
3

8

[
u−M2π−M

2
η +
2

3
M̃2π−

8

3
(r−1)

× m̂2
(
A0+2Z

P
0

) ]2
JrKK(u)

+
1

3

[
M̃2π+4m̂

2
(
3A0−4(r−1)Z

P
0

+2(2r+1)ZS0
)][
t−2M2π+

3

2
M̃2π

+10m̂2
(
A0+2Z

S
0

) ]
Jrππ(t)

+
2

9

[
M̃2π+4m̂

2
(
3A0−4(r−1)Z

P
0

+2(2r+1)ZS0
)][
M̃2η −

1

4
M̃2π

+ m̂2
(
(8r2+1)A0+8r(r−1)Z

P
0

+2(2r+1)2ZS0
)]
Jrηη(t)+

1

8

[
t−2M2π

+2M̃2π+8(r+1)m̂
2
(
A0+2Z

S
0

) ]

×

[
3t−6M2η +6M̃

2
η −
8

3
M̃2K

+
8

3
(r+1)m̂2

(
3rA0+2(r−1)Z

P
0

+2(2r+1)ZS0
)]
JrKK(t) . (111)

In the above formulae, the generalized O(p2) masses (also
present implicitly in the chiral logs µP and the loop func-
tions JrPQ(s)) are

M̃2π = 2
[
B0+2m̂(r+2)Z

S
0

]
m̂+4A0m̂

2 ,

M̃2K =
[
B0+2m̂(r+2)Z

S
0

]
m̂(r+1)+A0m̂

2(r+1)2 ,

M̃2η =
2

3

[
B0+2m̂(r+2)Z

S
0

]
m̂(2r+1)+

4

3
A0m̂

2(2r2+1)

+
8

3
ZP0 m̂

2(r−1)2 . (112)

The unitarity part can be further split into a poly-
nomial and dispersive part:

G̃
(4)
unit = G̃

(4)
unit, pol+ G̃

(4)
unit, disp

= G̃
(4)
unit|Jr→J(0)+ G̃

(4)
unit|Jr→J̄ . (113)

According to the general prescription, the dispersive part
can be replaced with that of the dispersive representation,
which has the general form

G̃(4)unit = φ
T (t)+φ(s)+φ(u) , (114)

where now

φ(s) = F 40

{(
1

3
απηM̃

2
π

)2
Jπη(s)

F 2πF
2
η

+
3

8

[
s−
1

3
M2η −

1

3
M2π−

2

3
M2K−

1

3
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×
(
2M̃2K− M̃

2
π− M̃

2
η +απηKM̃

2
π

) ]2JKK(s)
F 4K

}

(115)

φT (s) = F 40

{
1

3
απηM̃

2
π

[
s−
4

3
M2π+

5

6
αππM̃

2
π

]
Jππ(s)

F 4π

−
1

18
αηηαπηM̃

2
π

(
M̃2π−4M̃

2
η

) Jηη(s)
F 4η

+
1

8

[
s−
2

3
M2π−

2

3
M2K

+
2

3

((
M̃K− M̃π

)2
+2απKM̃KM̃π

)]

×

[
3s−2M2K−2M

2
η +αηK

(
2M̃2η −

2

3
M̃2K

)]

×
JKK(s)

F 4K

}
, (116)

for (58) and (59) and analogously for (60) and (61). The
coefficients απη . . . parametrize the difference between the
standard and the generalized cases, and within the stan-
dard O(p4) chiral expansion their values are either 1 or 0.
The dependence of these constants on the LECs are given
in Appendix G.

5.4 Observables of the πη scattering within GχPT
to O(p4) – the reparametrization

As can easily be seen from the above formulae (in fact, it is
a consequence of the construction of GχPT), after identify-
ing the parameters of the Lagrangians,

B0m̂

F 20
Lr4(µ)→

1

8
m̂ξ̃ ,

B0m̂

F 20
Lr5(µ)→

1

8
m̂ξr ,

B20m̂
2

F 20
Lr6(µ)→

1

16
m̂2ZS0 ,

B20m̂
2

F 20
Lr7(µ)→

1

16
m̂2ZP0 ,

B20m̂
2

F 20
Lr8(µ)→

1

16
m̂2A0 , (117)

and defining the remainders using the physical masses in-
side the chiral logarithms and the loop functions JrPQ, the
generalized bare chiral expansions contain all the terms of
the standard one. More precisely, the generalized O(p4)
bare expansions include extra O(p4) terms, which are
counted as O(p6) and O(p8) within the standard chiral
power counting scheme. As a consequence, after writing
the generalized bare chiral expansion of a generic “good”
observable g in the form

g = g(2),GχPT+ g(3),GχPT+ g(4),GχPT+ gδGχPTg

(118)

and then collecting the “standard” terms together, this ex-
pansion can be formally rewritten as

g = g(2),std+ g(4),std+ gδg , gδg = gδ
(G)
g + gδGχPTg ,

(119)

where the identification (117) is assumed. The extra O(p4)

terms mentioned above are now accumulated in gδ
(G)
g . In

the case of the polynomial parameters α . . . ω (90)–(93),
the two versions of the chiral expansion coincide for γ
and ω:17

δγ = δ
GχPT
γ , δω = δ

GχPT
ω , (120)

while the “standard” remainders δα and δβ can be split into
an explicitly known part, which includes the extra “non-
standard” terms, and the unknown remainders inherent to
GχPT:

δα = δ
loops
α (µ)+3

m̂2F 20
F 2πM

2
π

δCTα (µ)+ δ
GχPT
α , (121)

βδβ = βδ
loops
β (µ)+ m̂2F 20 δ

CT
β (µ)+βδ

GχPT
β . (122)

Here the first terms correspond to the new loops and
the second terms to the new counterterm contributions.
The explicit expressions for them can easily be extracted
from the formulae of the previous subsection, the results
are, however, rather lengthy and we postpone them to
Appendix H.
Let us note that both δloopα,β (µ) and δ

CT
α,β(µ) are gener-

ally renormalization scale dependent. However, due to the
running of the GχPT LECs A0, Z

S
0 , Z

P
0 , ξ and ξ̃, which,

after the identification (117), is the same as in the stan-
dard case, the “standard” remainders δα and δβ , given by
(121) and (122), are µ independent. Of course, the “true
GχPT” remainders δGχPTα , . . . , δGχPTω are scale indepen-
dent by construction. That means that the sum of the loop
and counterterm contributions to the “standard” remain-
ders is µ independent too.
The usual way to handle the reparametrization of the

GχPT bare expansions is quite similar to the standard one.
The difference is that as there are three additional O(p2)
LECs, and not all of them can be reparametrized using the
inverted mass and decay constant expansions. The solu-
tion is to leave two of them free (e.g. r and ζ = ZS0 /A0).
Consequently, the expansion is performed according to the
generalized power counting scheme and the terms of order
higher than O(p4) are discarded.
We shall, however, not use this approach, but rather

exploit the relation (119), i.e. sew the standard and gen-
eralized bare expansions together. The reparametrization
is then an extension of the resummed one (Appendix E),
where all the remainders of the mass and decay constant
bare expansions are split according to (119). We can use all
the resummed formulae as they are exact algebraic identi-
ties, valid independently on the version of χPT. The gen-
eralized contributions to the remainders can be found in

17 The reason is that they stem from the terms quadratic in
the Mandelstam variables.
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Appendices B and I. The outcome for the parametersα and
β is then obtained by simply inserting all the generalized
results for the remainders (Appendices B, H and I) into the
expression for δ′α and δ

′
β (108) and (109).

After this procedure, the generalized LECs are present
only in the formulae for the standard remainders. Also
note that δloopsα (µ) and δloopsβ (µ) as well as the general-
ized loop contributions to the mass and decay constant
remainders depend explicitly on the O(p2) LECs B0 =
XM2π/2m̂, F

2
0 =ZF

2
π ,A0, Z

S
0 and Z

P
0 .
18 So as the last step

of the reparametrization, the remaining dependence of the
generic “loop” remainders δloopsα (µ), . . . , etc. on the O(p2)
LECs F0, A0, Z

S
0 and Z

P
0 can be removed up to the order

O(p4) using the leading order expressions

F 20 = F
2
K = F

2
η → F

2
π ,

m̂2F 20Z
S
0 →

1

4

F 2πM
2
π

r+2
(1−X− ε(r)) ,

m̂2F 20Z
P
0 →−

1

8
F 2πM

2
π

(
ε(r)−

∆GMO

(r−1)2

)
,

m̂2F 20A0→
1

4
F 2πM

2
πε(r) . (123)

As a summary, our handling of the generalized bare ex-
pansion can be viewed in two ways – either as a partial esti-
mate of the standard remainders present in the resummed
approach or as a special treatment within the generalized
framework, where the O(p2) (and partly O(p3)) LECs are
reparametrized algebraically at the leading order, while
they are treated perturbatively at the O(p4) one. The nu-
merical results including a simple estimate of the remain-
ing NLO and NNLO LECs are presented in Sect. 6.6; also,
Appendix B contains an illustrative example of applying
this procedure on Fη.

6 Numerical results

In this section we shall present the numerical analysis
of the observables connected to the πη scattering am-
plitude and the results which illustrate the subtleties of
the various versions of the chiral expansions described
above. In the numerical estimates we use Mπ = 135MeV,
Mη = 548MeV,MK = 496MeV, µ=Mρ = 770MeV, Fπ =
92.4MeV and FK = 113MeV. For the calculation within
the standard χPT, the O(p4) LECs are taken from [44–
46]. In the alternative reparametrization schemes, where
only L1, L2 and L3 remain among the free parameters and
the other O(p4) LECs are expressed in terms of physical
masses, decay constants and the indirect remainders, we
again keep (though rather non-systematically) the values
of L1, L2 and L3 from the same references. The sensitivity
on this LECs might be then estimated bymeans of the vari-
ation around these central values. In this chapter we insert

18 More precisely, the loops depend on the “true O(p2) LECs”

A0, Z
S,P
0 (cf. Appendix F), the difference is however of higher

order in the generalized power counting.

the physical masses into the functions JrPQ(0) unless stated
otherwise.

6.1 The standard chiral perturbation theory

This subsection discusses the predictions of the standard
chiral expansion to the orderO(p4), which are summarized
in Tables 1 and 2. Let us start with the parameter α of the
polynomial part of the amplitude. The relevant formulae
from Sect. 5.1 and the LECs taken from [44]19 result in the
following value:

α=
1

3

(
1+0.683+ δstα

)
F 2πM

2
π . (124)

In this expression, the first term corresponds to the current
algebra result αCA = F 2πM

2
π/3, while the second one repre-

sents the O(p4) correction. The third term is the standard
remainder, which might be out of control when X,Z � 1
and r far from r2, even if the bare expansion of α were
globally convergent (let us recall that α is a “good” ob-
servable) as we have discussed in Sect. 2. Let us also notice
the unusually large next-to-leading correction, which could
also indirectly indicate the numerical importance of the re-
mainder in this scheme.
The actual numerical value of the NLO correction is

very sensitive to a shift in the O(p4) LECs. The corres-
ponding variation ∆α is numerically

∆α

αCA
= (3.38∆L1+0.56∆L3−3.50∆L4−0.30∆L5

+3.62∆L6−3.42∆L7+0.10∆L8)×10
3 .
(125)

For example, using the O(p6) analysis based LECs
from [45, 46] instead of those from [44], we get (cf.
Table 1)20

∆α

αCA
= 0.23 . (126)

Note that the large coefficients in front of the L4 and
L6 contributions indicate sensitivity of this observable to
the vacuum fluctuations of ss pairs as mentioned in the
introduction.
Let us compare this case with the related “dangerous”

observable, namely the subthreshold parameter c00. From
(83) we get

c00 =
1

3
(1+0.683−0.625+0.006)

M2π
F 2π
= 1.064cCA00 ,

(127)

19 This set of LECs is used in numerical estimates unless
stated otherwise.
20 Because the values of the LECs Li based on the O(p

6) fit
implicitly include parts of the O(p6) corrections, the large vari-
ation can be interpreted as a signal of the importance of the
NNLO contributions to the parameter α. The same is true for
the other observables from Table 1.
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Table 1. Standard O(p4) values of the polynomial parameters
for the two sets of LECs taken form [44–46]. In the last row,
the sensitivity on the LECs is (over)estimated by adding the
uncertainties associated with the LECs [44] in quadrature (this
is of course only a rough estimate, because in fact not all the
uncertainties of the Li are independent)

Li α/αCA 103β/M2η 103γ 104ω

[44] 1.68 0.90 –1.52 2.24
[45, 46] 1.91 –0.68 –0.23 –5.03
∆ 2.48 7.49 3.31 9.48

Table 2. Standard O(p4) values of the subthreshold and
threshold parameters as in Table 1. The cij parameters are
given in their natural units, as described in the main text. Anal-
ogously to Table 1, ∆ is the sensitivity on the LECs (over-)
estimated by adding the uncertainties associated with the
LECs [44] in quadrature

Li c00/c
CA
00 103c10 103c20 103c01 a0/a

CA
0 103a1

[44] 1.06 0.91 –1.23 8.27 1.96 0.59
[45, 46] 1.51 –0.67 0.07 –3.36 1.18 –0.60
∆ 2.49 7.49 3.31 15.16 3.21 2.80

where the individual terms are the leading order contribu-
tion cCA00 =M

2
π/3F

2
π , the next-to-leading correction to the

parameter α, the next-to-leading correction to F 2η induced
by the expansion of the denominator and the contribution
stemming from the unitarity correction φ(s), respectively.
The first two large corrections accidentally cancel here;
this, however, does not automatically imply a similar can-
cellation of the potentially large remainders (we have not
written them down explicitly here). Also, the strong sen-
sitivity of α to the variation of the LECs propagates here,
giving

∆c00
cCA00

=
∆α

αCA
−0.28∆L5×10

3 (128)

and it furthermore increases the uncertainty of the O(p4)
correction. This strong sensitivity supports the possibility
that the standard remainders for c00 might be numerically
larger than the next-to-leading correction. Namely using
the LECs from the O(p6) fit [45, 46], which generates part
of theO(p6) corrections to the reparametrized expansion of
c00, we get

∆c00
cCA00

= 0.45 . (129)

We can also check the sensitivity of the next-to-leading
order contributions to the way we rewrite them in terms
of the physical masses and decay constants (i.e. how we
use the O(p2) relations generating here a difference of
the order O(p6)). Provided that we insert the alternative
O(p2) expressions for r into the chiral expansions of α

and c00:

r̃2 =
1

2

(
3M2η
M2π

−1

)
= 24.2 , (130)

r∗2 = 2
F 2KM

2
K

F 2πM
2
π

−1 = 39.4 , (131)

instead of the standard O(p2) value r = r2 = 2M
2
K/M

2
π−

1 = 25.9, we get as a result

α̃=
1

3
(1+0.601)F 2πM

2
π , (132)

c̃00 =
1

3
(1+0.031)

M2π
F 2π

(133)

and

α∗ =
1

3
(1+1.297)F 2πM

2
π , (134)

c∗00 =
1

3
(1+0.325)

M2π
F 2π
. (135)

The remaining parameters of the polynomial part start
at O(p4) and we get them from (98), (92) and (93). Their
numerical values and the related subthreshold parameters
cij in natural units (chosen in such a way as to make the
comparison with the polynomial parameters easy, i.e. we
take c10 and c01 in units ofM

2
η/F

2
π and c20 in units of F

−4
π ,

cf. (83)) are shown in Tables 1 and 2 for the two sets of
O(p4) LECs.
All the considered parameters are strongly sensitive to

the variations of the LECs. For instance, the parameter β
varies with the Li as

∆β = (17.0∆L1−2.8∆L3+9.1∆L4)M
2
η . (136)

For the LECs [44] we get β = 0.90×10−3M2η . Using the
set [45, 46] we get a drastic change

∆β =−1.58×10−3M2η . (137)

Let us turn to the “doubly dangerous” observables repre-
sented by the scattering lengths now. For the s-wave we
obtain from (82) and the LECs [44]

a0 =
1

24πF 2π

M3π
Mη+Mπ

(1+0.683+0.378−0.625+0.527)

=
1

24πF 2π

M3π
Mη+Mπ

(1+0.963) = 11.0×10−3 . (138)

Here the individual terms in the first line represent the
current algebra result, the correction stemming from the
O(p4) contributions to the parameters α and ω, the next-
to-leading correction to F 2η induced by the expansion of the
denominator and the correction induced by the dispersive
part of the amplitude φ(s), in this order. This result con-
firms the expectations about bad convergence of the chiral
expansion for the observables which are connected to the
threshold values of the amplitude – even if the polynomial



248 M. Kolesár, J. Novotný: πη scattering and the resummation of the vacuum fluctuation in three-flavor χPT

NLO corrections were small, which they are not, the dis-
persive part would still be as large as 50% of the leading
order term.
The sensitivity to the O(p4) LECs is illustrated

in Table 2. The p-wave scattering length then starts at
O(p4), we get the values in the last column of the table
from (82).
When comparing our standardχPT results for the scat-

tering lengths (first row of Table 2),

a0 = 11.0×10
−3 , a1 = 5.9×10

−4 , (139)

with those of [38], quoted in the Introduction,

aBKM0 = 7.2×10−3 , aBKM1 =−5.2×10−4 , (140)

we can see a seemingly large discrepancy. The difference
is produced by a different set of O(p4) LECs, the alterna-
tive treatment of the Fη in the denominator and by another
form of the unitarity corrections – the authors do not use
a matching with a dispersive representation. Taken these
distinctions into account, we get more consistent numbers
(with our inputs for the masses and decay constants):

a0 = 7.0×10
−3 , a1 =−5.0×10

−4 . (141)

As we can see, a slightly different treatment of the stan-
dard chiral expansion may lead to a significant shift in
the results. This does not necessarily mean that the stan-
dard counting is not consistent, though. As follows from
from Table 2, the nominal uncertainty associated with the
O(p4) LEC error bars encompasses the difference

∆a0 = 18.0×10
−3 , ∆a1 = 28.0×10

−4 . (142)

What can be concluded is that the standard approach has
a large theoretical uncertainty attached, which is hard to
estimate. The sensitivity to the Lri values also leads to
a considerable difference when one uses the O(p6) fit (sec-
ond row in Table 2). As the two fits effectively differ only in
a rearrangement of the expansion, both cannot have small
higher order corrections at the same time.

6.2 Resummation of vacuum fluctuations – basic
properties

In the resummed case, the free parameters areX, Z, and r
together with the remaining LECs L1, L2 and L3 and the
direct and indirect remainders δα . . . δω and δFP , δFPMP .
Because Fη is experimentally not known with high enough
accuracy, we also have to fix how to treat the observ-
able ∆GMO, which was introduced to eliminate the LEC
L7 using the bare expansion for F

2
ηM

2
η . Let us recall that

our definition of ∆GMO follows [8], where it is based on
the good observables F 2PM

2
P instead of M

2
P and differs

from that originally defined in [3]. One possibility is to
treat ∆GMO as an additional independent parameter. The
other, similarly to the treatment of Fη in the denomina-
tors of (81), (82) and (83), is to use a (resummed) chiral

expansion of F 2η inserted into ∆GMO for the numerical es-
timates, i.e. to insert the following exact algebraic identity
into (106) (cf. Appendix B for details):

F 2πM
2
π∆GMO = F

2
πM

2
π−4M

2
KF

2
K +M

2
η(1− δFη)

−1

×

(
4F 2K(1− δFK)−F

2
π(1− δFπ)

−M2π

(
X

Z

)(
Jrππ(0)−2(r+1)J

r
KK(0)

+(2r+1)Jrηη(0)
))
. (143)

This generates the indirect remainder δFη in a nonlinear
way.
Before doing a more detailed analysis, let us first il-

lustrate the numerical sensitivity connected with the sub-
tleties of the definition of the bare expansion. As we have
discussed in Sect. 3, there is still some freedom on how to
define the amplitudes entering the dispersive part of the
Gπη (cf. (58)–(61)) and also how to treat the masses inside
the chiral logs. Based on general considerations it was ar-
gued [9] that in the latter case the different prescriptions
should not make much difference. Nevertheless, it might be
interesting to test this assumption numerically in our con-
crete case and also to check what is the numerical influence
of the varying amplitude definition.
In Fig. 1 we plot a comparison of various definitions of

the dispersive part of the amplitude using the scattering
length a0 as an example, i.e. we illustrate its sensitivity
on the various versions of the unitarity corrections. The
cusps on the full line, which uses the strict chiral expan-
sion with the unphysical choice of the O(p2) masses in all
Jrij , originate in the conflict of the physical masses used for
the on-shell outer legs and the unphysical location of the
thresholds. This illustrates the fact that the original strict
chiral expansion is unsuitable for realistic physical predic-
tions and its redefinition into a bare one is necessary. The

Fig. 1. Comparison of the numerical impact of the various
forms of the dispersive part on the scattering length a0. The
full line represents the strict chiral expansion, dotted, dashed
and dash-dotted lines the “minimal” modification, (58)–(61),
respectively. The horizontal line shows our standard NLO pre-
diction
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Fig. 2. In this figure we il-
lustrate the sensitivity of the
“good” variables α and β to
the treatment of the chiral
logs. The full line corresponds
to the O(p2) masses in all the
Jrij(0), while the dotted and
dashed lines correspond to
the physical masses either in
all Jrij(0) or only in the J

r
ij(0)

originating from the unitarity
corrections. Horizontal lines
are standard NLO predictions

dotted line shows the “minimal” physical modification of
the strict expansion by means of the insertion of physical
masses into all Jrij . While the “minimal” version and the
unitary choice (60) and (61) give numerically almost the
same result, the difference between these two and the third
possibility (58) and (59) is up to ∼ 0.3aCA0 .
Figure 2 shows the dependence of the polynomial pa-

rameters α and β on Y =X/Z for Z = 0.8 and r= 20, using
the the various possible treatments of chiral logarithms in
the bare expansion. The results demonstrate that the dif-
ference might be numerically important in some range of
Y . For α the various possibilities do not differ drastically
in comparison with the value of α itself; on the other hand
the differences become comparable with αCA at Y ∼ 0.5.
As we have discussed in Sect. 2, in the region of small Y
the case with O(p2) masses in the tadpoles only should
not differ drastically from the case when all the masses are
physical. However, the convergence to the common value
at Y = 0 is rather slow and in the intermediate region of Y
the difference of these two cases for α is ∼ 0.5αCA in a rela-
tively wide interval. Keeping the O(p2) masses also in the
unitarity corrections produces instabilities for Y → 0, as
expected. The parameter β (which starts at O(p4)) is even
much more sensitive.
In the following numerical analysis we take a prag-

matic point of view and fix the bare expansion in such
a way that the comparison of the resummed and standard
reparametrizations remains as simple as possible, i.e. we
insert physical masses into Jrij(0) and define the amplitude
according to (56), (57) and (60), (61).

6.3 Numerical comparison of the resummed and
standard reparametrization

Within standard χPT we have an O(p4) prediction for X,
Z, r and ∆GMO based on the standard formal O(p

4) chi-

Table 3. Standard values of X,Z, r and ∆GMO

Li set Xstd Zstd rstd r∗std ∆stdGMO

[44] 0.902 0.865 25.2 26.7 6.41
[45, 46] 0.726 0.734 25.9 31.7 3.31

ral expansion (A.1) and (A.3); see Appendix A. Using the
LECs from [44] and [45, 46], we get numerically the central
values in Table 3, which should confirm the self-consistency
of the standard chiral expansion scheme. As we can see,
while the expectations are fulfilled in the first case, there
is a considerable shift when using the O(p6) fitted con-
stants. These numbers, moreover, should be taken with
some caution, because they originate in the expansions of
the “dangerous” observables and can be therefore plagued
with large O(p6) remainders as well as with strong sensi-
tivity to the O(p4) LECs.21 In Table 3 rstd stems from the
chiral expansion of r2, while r

*std uses an expansion of r∗2 .
22

Let us now illustrate the relationship of the resummed
and standard approach using the observables from
Sect. 6.1.
For the “good” observables α and β we can expect that

the numerical values of Xstd, Zstd, rstd and ∆stdGMO, with
L1, L2 and L3 taken from [44] for definiteness, should pro-
duce numbers consistent with the first row of Table 1 when
inserted into ((106) and (107)). The results for the various
possibilities of how to approach the standard predictions
for α and β (which is independent on∆GMO) within the re-
summed version of χPT are summarized in Table 4.23 The
last row corresponds to the resummed treatment of∆GMO
explained above. The dependence of the central values of α
and β on the parameters r, X and Z in the broader vicin-
ity of their standard values is illustrated in Fig. 3. These
results can be interpreted as a token of consistency of both

21 As was analyzed in detail in [8], the actual values of Xstd

and Zstd are strongly sensitive to the values of the LECs L6 and
L4 connected with the vacuum fluctuation of the ss pairs, and
the same is true for the sensitivity of rstd and∆stdGMO to L8 and
L7. This causes large error bars to be attached to these values.
Nevertheless, in the following we take these central values as
a reference point for an illustrative numerical comparison of the
two versions of the chiral expansion.
22 Though the difference between the values of rstd and r*std

is within the standardly expected accuracy of the O(p4) ap-

proximation, note that for r*std the O(p4) correction is much
larger than in the first alternative (r2 = 25.9 while r

∗
2 = 39.4).

23 In this and the following tables in this subsection we ig-
nore the uncertainty stemming from the remainders and Li,
i= 1, 2, 3, and we give only the central values (assuming the
central values of the remainders to be zero).
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Table 4. The values of the polynomial parameters α and β and the related subthreshold and thresh-
old parameters near the standard reference point. For ∆GMO we take either the standard value
(∆stdGMO) or the resummed prediction described (∆GMO) in the main text

X Z r ∆GMO α/αCA 103β c00/c
CA
00 103c10 a0/a

CA
0 103a1

Xstd Zstd rstd ∆stdGMO 1.88 0.69 1.11 0.41 1.64 0.30

Xstd Zstd r*std ∆stdGMO 1.61 0.55 0.95 0.33 1.47 0.26

Xstd Zstd r2 ∆stdGMO 1.74 0.62 1.03 0.37 1.55 0.28

Zstd Zstd r*std ∆stdGMO 1.76 0.75 1.04 0.45 1.57 0.31

Zstd Zstd rstd ∆stdGMO 2.02 0.89 1.20 0.53 1.72 0.35

Xstd Zstd rstd ∆GMO 2.07 0.69 1.22 0.41 1.75 0.30

Xstd Zstd r*std ∆GMO 1.78 0.55 1.05 0.33 1.57 0.26

variants of reparametrization for good observables near the
standard reference point Xstd, Zstd and rstd, where the
predictions of the resummed version almost coincide with
the standard results.24 This coincidence together with the
working hypothesis about the controllable remainders of
good observables within the resummed reparametrization
scheme confirms again the self-consistency of the stan-
dard expansion based on the assumptionX ∼ 1, Z ∼ 1 and
r ∼ r2. Away from the standard reference point, however,
the standard reparametrization might be dangerous in the
sense that the difference between the standard and the re-
summed prediction diverges rapidly and the importance
of the standard O(p6) remainders might therefore increase
considerably.
For the “dangerous” observables like cij we cannot

a priori expect coincidence of both expansions even near
the standard values of X, Z, and r due to the dif-
ferent treatments of the denominators, which contain
large O(p4) corrections and are not expanded in the re-
summed case. Comparison of both approaches is illus-
trated in Table 4 (with the same treatments of ∆GMO
as above), Table 5 and in Fig. 4. For the dispersive part
we use the prescription (60) and (61), which differs from
the corresponding standard contributions of the unitar-
ity corrections to cij for X = Z = 1 and r = r2 by a factor
F 2π/F

2
η ≈ 0.6. This is reflected by the values of those cij

that start at O(p4) (cf. Tables 4 and 5). Namely in this
case the contribution of the polynomial part is reduced
near the reference point roughly by the same factor with
respect to the standard value (which includes only the
first term of the expansion of the denominator). On the
other hand, c00 is compatible with the standard value,
because of the large O(p2) contribution, the tiny disper-
sive contribution and the fact that within the standard
reparametrization of the bare expansion also the second

24 As a rule, the pointXstd, Zstd and rstd cannot give the best
coincidence with the standard values in all cases. The reason
can be understood e.g. by having a closer look on the resummed
reparametrization of β (cf. (107)). In order to reproduce the
dependence of β on L4 satisfactorily, we need Z = Z

std and
r = rstd; on the other hand to reproduce the chiral logs we
rather need X/Z = 1 and r = r2. This may explain why β ap-
proaches the standard value best for X = Z = Zstd.

Table 5. The values of the subthreshold parameters c20 and
c01 related to the polynomial parameters γ and ω at the stan-
dard reference point

X Z r 104c20 103c01

Xstd Zstd rstd −7.10 4.86

Xstd Zstd r*std −6.97 4.79

Xstd Zstd r2 −7.04 4.83

term from the expansion of the denominator is taken into
account.
Let us now proceed to the “doubly dangerous” observ-

ables a0 and a1. These are related to the values of the am-
plitude at the threshold and receive therefore a large con-
tribution from the dispersive part of the amplitude. While
a0 is reproduced well at the standard reference point, a1
(which starts at the NLO) is off the standard value roughly
by a factor 0.6 from the same reasons as for the cij parame-
ters. The dependence of these observables onX, Z and r is
depicted in Fig. 5.

6.4 The role of the remainders

Up to now we have not discussed the uncertainties of the
observables calculated within the resummed scheme. They
are connected with the direct and indirect remainders as
well as with the LECs Li, i = 1, 2, 3. As a first illustra-
tion, we have added the error bars stemming from the re-
mainders to the central values of the various observables
depicted in Figs. 3–5. These illustrate the rough estimate
of the remainders δ ∼ (30%)2 ∼ 0.1 as suggested in [8] and
adding the uncertainties in quadrature.
In more detail, at the standard reference point X =

Xstd, Z = Zstd and r = rstd, using (108), (109) and (125),
(136), we numerically get for the corresponding variations
(to the first order in the remainders)

∆α

αCA
= (δα+6.92δFηMη −12.71δFKMK −0.76δFπMπ

+9.37δFK +5.22δFπ −6.92δFη)

+ (3.38∆L1+0.56∆L3)×10
3 , (144)



M. Kolesár, J. Novotný: πη scattering and the resummation of the vacuum fluctuation in three-flavor χPT 251

Fig. 3. The dependence of
the parameters α and β on
r, X and Z is plotted, one of
the parameters being fixed at
its standard reference value in
each figure. The dashed ho-
rizontal line shows the stan-
dard values from the first row
of the Table 1, the full cir-
cle depicts the corresponding
resummed value at the stan-
dard reference point [rstd,
Xstd, Zstd]. The error bars
represent the 10% uncertain-
ties from the direct and in-
direct remainders added in
quadrature. In the first row,
r is fixed at rstd, the filled
areas highlight the depen-
dence on Z between Z = Zstd

(solid line) and Z = 0.5 (dot-
ted one). Similarly, in the sec-
ond row X =Xstd, the filled
area shows the dependence on
Z again. Z is fixed at Zstd

in the last row, the solid line
shows the case with r = rstd,
the dotted one the one with
a lower value r = 15

∆β =
[
(0.69δβ+2.34δFK −20.52δFπ)

+ (17.0∆L1−2.8∆L3)×10
3
]
×10−3M2η . (145)

This reveals a strong sensitivity on both the δs and the
LECs. Assuming again the typical size of the remainders to
be δ ∼ 0.1 and adding all the uncertainties in quadrature
(for ∆Li we take the error bars from [44]) we obtain the
rough (over-) estimates
∣∣∣∣∣
∆α

αCA

∣∣∣∣∣=
√
1.932+1.192 = 2.27 , (146)

∣∣∆β∣∣=√2.062+5.962×10−3M2η = 6.31×10−3M2η ,
(147)

where the first number under the square root represents
the contribution of the remainders, while the second one
accumulates the uncertainty fromL1,3. Though these num-
bers are a little bit more optimistic than those in the last
row of Table 1 (note that the latter originated purely from
the uncertainties of ∆Li and did not include any estimates

of the higher order corrections to α and β), it is clear that,
without more restrictive information on the remainders
(and Li, i= 1, 2, 3)

25, the predictive power of χPT is re-
duced considerably in the case of πη scattering even for
“good” observables. In other words, small remainders are
not a guarantee of an equivalently small final uncertainty.
In what follows, we therefore try to gain some additional
information outside the (resummed) χPT expansion to get
further estimates of the size of the remainders.
The sources of the remainders are twofold: on the one

hand there are the unknown terms of the pure derivative ex-
pansion, on the other hand the contributions coming from
the expansion in the quark masses. We try to get estimates
for both of them from different sources, namely using the

25 As already discussed, the explicit dependence on these con-
stants could be eliminated by means of a reparametrization
similar to those for Li, i= 4, . . . , 6 using further experimental
input e.g. from Ke4 decay. The price to pay is that one must in-
troduce additional remainders connected with observables used
for such a reparametrization.
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Fig. 4. Dependence of the
subthreshold parameters c00
and c10 related to the poly-
nomial parameters α and β.
The figures are in one-to-
one correspondence to those
in Fig. 3

resonance estimate for the first type as well as independent
information from generalizedχPT for the second.

6.5 Resonance estimate of the direct remainders

In order to partially estimate the derivative part of the
higher order corrections to the chiral expansion, we use the
assumption that the process under consideration is satu-
rated by the exchange of the lowest lying resonances, the
interactions of which can be described by the Lagrangian
of the resonance chiral theory (RχT). The leading order
Lagrangian of RχT was originally formulated in the semi-
nal paper [47] and applied to πη scattering in [38]. To this
process, only scalar resonances as well as η8–η0 mixing con-
tribute. Our result for the amplitude agree with [38] (cf.
Appendix J), which we can rewrite in terms of the reson-
ance contributionGRπη to Gπη in the form

GRπη(s, t;u) = α
(4)
R +β

(4)
R t+γ

(4)
R t

2+ω
(4)
R (s−u)

2

+∆GRπη(s, t;u) . (148)

The polynomial part with the coefficients (in what follows,
MS andMS1 are the octet and singlet scalar mass respec-
tively, cd, cm, c̃d, c̃mand d̃m are the couplings defined in [47])

α
(4)
R = 8M

2
πM

2
η

(
−
c2d
3M2S

+
2c̃2d
M2S1

)

+16M2π

o

M2η
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3M2S
−
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M2S1

)

+8M2η

o

M2π

(
cdcm

3M2S
−
2c̃dc̃m
M2S1

)

−16
d̃2m
M2η1

o

M2π

(
o

M2π −
o

M2η

)

+20
o

M2π

o

M2η

(
c̃2m
M2S1

−
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3M2S

)
−M2π

o

M2π
8cdcm
3M2S

+4
o

M4π

(
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M2S
+
c̃2m
M2S1

)
, (149)
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Fig. 5. Dependence of the
scattering lengths a0 and a1
related to the polynomial pa-
rameters α and β. The figures
are in one-to-one correspon-
dence to those in Fig. 3

β
(4)
R =−

8c̃dc̃d
M2S1

Σηπ+
4

3

c2d
M2S
Σηπ

+8

(
c̃dc̃m

M2S1
−
cdcm

3M2S

)( o

M2π +
o

M2η

)
, (150)

γ
(4)
R =

4c̃2d
M2S1

−
c2d
3M2S

, (151)

ω
(4)
R =

c2d
3M2S

(152)

gathers the complete O(p4) resonance contribution (here
we can recognize the resonance saturation of the LECs in
(90)–(93)). This part of the amplitude is already included
in our resummed version of χPT, either explicitly through
the LECs L1 . . . L3 or implicitly using the reparametriza-
tion in terms of the masses, decay constants and parame-
ters r, X and Z. On the other hand, ∆Gπη,R(s, t;u) can be
formally understood as an infinite sum of the higher order
corrections in the (purely) derivative expansion, summed

up to

∆Gπη,R(s, t;u) =
4t

M2S1(M
2
S1
− t)

×

(
c̃d
(
t−2M2π

)
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o
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)
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M
2
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+
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2
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2
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o
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+
2

3

u

M2S(M
2
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×

(
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(
u−M2π−M

2
η

)
+2cm

o

M2π

)2

−
2

3

t

M2S(M
2
S− t)
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×

(
cd
(
t−2M2π

)
+2cm

o

M2π

)

×

(
cd(t−2M

2
η)+2cm

(
2
o

M
2
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d̃2mM
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(153)

Of course, this does not exhaust all possible higher order
corrections (note e.g. that the resonance Lagrangian we
use contains only the leading order interaction terms with
one resonance field and chiral building blocks of the order
O(p2)); nevertheless we can use it at least as a rough es-
timate of the effect of higher orders of the derivative ex-
pansion. This is in some sense a procedure opposite to the
usual resonance saturation; instead of LECs we “saturate”
the remainders by means of sewing together the resummed
chiral expansion GχPTπη (without remainders) with reson-
ance chiral theory, writing the full RχT amplitude as

GRχTπη (s, t;u) =G
χPT
πη (s, t;u)+∆G

R
πη(s, t;u) (154)

and identifying GRχTπη with the full χPT amplitude, the

remainder being ∆GRπη. Under this assumption, we can de-
rive the following higher order contributions to the direct
remainders from ∆GRπη
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, (155)
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(156)

and similarly for δRγ and δ
R
ω (see Appendix J). Note that

the dependence onX andZ is exclusively through the ratio
Y =X/Z here.
One may notice that there are two distinct features of

this procedure as compared to the usual LEC saturation.
First, there is no need to fix a saturation scale, which is the
result of “saturating” the renormalization scale indepen-
dent remainder instead of the scale dependent LECs. And
second, as the resonance contributions are resummed to all
chiral orders, the resonance poles are explicitly present in
our result, as can be seen in (153), (155) and (156) as well
as the formulae for δRγ and δ

R
ω in Appendix J.

For rough numerical estimates we use MS , MS1 , Mη1
and the couplings cd, cm, c̃d, c̃m and d̃m from [47]. This
gives at the standard reference point X =Xstd, Z = Zstd

and r = rstd:

δRα = 1.00 , (157)

βδRβ =−0.15×10
−3M2η , (158)

which represents roughly 55% and 20% correction to the
values in the first row of the Table 4, respectively. The de-
pendence of δRα and δ

R
β on Y = X/Z and r is depicted

in Fig. 6. The effect of the resonance remainder estimate
on the parameters α and β in a wider range of the X, r
and Z is illustrated in the first column of Fig. 8; analo-
gous plots for γ and ω are in Fig. 7. As can be seen, these
results suggests the conclusion that the derivative part of
the expansion could in some cases produce higher order re-
mainders with a much larger value than 10%.

6.6 Generalized χPT

In the previous subsection we have tried to estimate the
contributions to the remainders generated by the deriva-
tive expansion. The resulting expressions (155) and (156)
could, however, gather only terms of at most the second
order26 in the quark mass expansion due to the lowest
order resonance Lagrangian used. Also, the indirect re-
mainders have not been included in this way as there is no
contribution to them in this simplest approach. For the ap-
praisal of the importance of the missing terms we therefore
need additional information. One possibility might be to
use a resonance Lagrangianwith additional terms of higher
chiral order suited for saturation of the O(p6) LECs [48]
and/or to go to the next-to-next-to leading order in the
chiral expansion; this is, however, beyond the scope of our
paper.
Instead we try to get some flavor of the size of the ef-

fect by means of a comparison of our previous results with
generalized χPT, which was originally designed to han-
dle the badly convergent quark mass expansion in the case
X� 1 and therefore also includes terms which correspond
to higher orders in the standard chiral power counting.
In Sect. 5.4, we have already rewritten the generalized

expansion of the parameters α and β (as well as that of
the masses and decay constants in Appendices B and I) in
the “resummed” form (106)–(109) by means of splitting
the “standard” remainders into the “nonstandard” extra
terms δloops(µ) and δCT(µ) originating in GχPT and the
unknown part δGχPT. Therefore, neglecting the latter, the
sum δloops(µ)+ δCT(µ) could in a sense be interpreted as a
rough estimate of the contribution to the standard remain-
ders stemming from the higher orders of some quark mass
expansion.
While the δloops(µ) are known, the δCT(µ) depend on

the unknown LECs of the GχPT Lagrangian (cf. Ap-
pendix F). We therefore set δCT(µ) = 0 at the fixed scale

26 Note that the physical masses in (155) and (156) originate
in the derivative expansion.
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Fig. 6. Dependence of the
resonance estimates of the
direct remainders on Y =
X/Z for r = 15 (dots), r2
(solid) and 30 (dashed). Note
that for MS1 =MS and c̃m,d
= cm,d/

√
3, the remainder δRβ

is exactly independent on r

Fig. 7. Polynomial parame-
ters γ and ω depending on Y .
Horizontal dashed line: stan-
dardO(p4) and central RχPT
value. The result with reson-
ance remainder estimates is
shown by the solid line

µ, and by varying this scale in δloops(µ) from µ =Mη to
µ=Mρ we can get some information on the contribution of
the unknown LECs (note that δloops(µ)+ δCT(µ) is renor-
malization scale independent). We apply this procedure
both to the direct and indirect remainders.
The usual way of handling the generalized χPT expan-

sion is to neglect the unknown remainders δGχPT. We can
repeat the considerations from the previous subsection and
partially appreciate them using the resonance estimate. In
order to avoid double counting, we have to further modify
the resonance contribution to the remainder (153) sub-
tracting terms of the order O(p4) within the generalized
power counting in the same way as was done in the previous
subsection (c.f. (148))
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This combined GχPT and resonance estimate of the re-
mainders is illustrated in Fig. 8; the right column shows
the result in the case of the polynomial parameters α
and β. The effect of the unknown GχPT LECs is estimated
by their scale dependence. The lines closer to the central
RχPT results with neglected remainders are the ones at
the scale µ =Mρ, i.e. the constants are set to zero at the
usually chosen scale. The filled grey areas then show the
change when the LECs are set to the difference when mov-

ing from the scale µ=Mρ toMη. Admittedly, this assigns
quite arbitrary numbers to the LECs, so the uncertainty
should be viewed as a rough estimate which can go both
ways. The result can be interpreted as being quite con-
sistent with the 10% estimate of the remainders, though
clearly exceeding it for some range of the free parameters
X, Z and r.
As for the parameters γ and ω, because their contribu-

tion in the polynomial expansion is quadratic in the Man-
delstam variables, the GχPT estimate does not contribute
here.

7 Summary and conclusions

In this paper we have studied the properties of various
variants of the chiral expansion, namely the recently intro-
duced resummed χPT as compared to the standard and
partly generalized versions, on the concrete example of πη
scattering. Our calculations paid special attention to the
possible reparametrization in terms of the physical observ-
ables. We have tried to illustrate several issues in detail,
specifically the following.

– We considered the necessity of carefully choosing a class
of “good” observables for which the condition of global
convergence is believed to be satisfied in the sense that
the O(p6) and higher remainders are small and under
control.
– Next, we have illustrated the necessity to carefully de-
fine the bare expansion of “good” observables. Here we
have concentrated on the requirements dictated by the
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Fig. 8. Polynomial parame-
ters α and β depending on
X and Z for traditional and
low values of r. The dotted
line shows the central value
for Z = 0.9, the dashed one
is the same for Z = 0.5. The
error bars correspond to the
10% estimates of the remain-
ders. Left column: resonance
estimate, filled areas highlight
the O(p6) and higher correc-
tions to the amplitude gen-
erated by resonances (lighter
for Z = 0.9, darker for Z =
0.5). Right column: results
with combined resonance and
GχPT estimate of remain-
ders. Filled areas show the
scale dependence (µ ∼Mη −
Mρ), lighter ones are for Z =
0.9 and darker ones for Z =
0.5

exact renormalization scale independence as well as the
exact perturbative unitarity. As we have shown, both
these requirements can be met by means of sewing to-
gether the strict chiral expansion in terms of the LECs
with the dispersive representation for the correspond-
ing Green function. Nevertheless, the resulting bare ex-
pansion is not yet defined uniquely; one has to fix the
way how to treat the chiral logs and also the O(p2) am-

plitudes entering the dispersive integrals. Though the
difference is formally of the same order as the remain-
der itself, we have found that it might be numerically
significant in some region of the free parameters.
– We have investigated the properties of the standard
chiral expansion, based on the potentially “dangerous”
reparametrization of the bare expansion implicitly as-
suming X,Z ∼ 1 and r ∼ r2. In this case we have es-
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tablished a strong sensitivity of the observables for πη
scattering on the O(p4) LECs; this plagues the stan-
dard prediction with a large uncertainty. In the case of
L4 and L6 this also means a strong sensitivity to the
vacuum fluctuations of the ss pairs and therefore to
the deviation from the standard scenario withX,Z ∼ 1.
The unusually large absolute values of the NLO cor-
rections as well as large variations achieved for most of
the observables (including the “good” ones) when mov-
ing from the O(p4) fit of the LECs Li [44] to the O(p

6)
based fit [45, 46] might be interpreted as a signal of the
importance of the NNLO corrections within the stan-
dard chiral expansion. This seems to be also supported
by the sensitivity of the NLO contributions to their
form when expressed in terms of the physical masses
and decay constants (i.e. how the O(p2) relations like
e.g. the Gell-Mann–Okubo formula are used).
– We have considered the properties of the “safe” repa-
rametrization and resummation of the vacuum fluc-
tuations. We have confirmed that, for the “good” ob-
servables, the resummed and standard values coincide
near the standard reference point [Xstd, Zstd, rstd].
Under our working hypothesis, which assumes the
“good” observables to be accompanied with small and
controllable remainders, this can be interpreted as
consistence of the standard O(p4) chiral expansion
of “good” observables in the sense that the poten-
tially large higher order remainders are in fact small.
On the other hand, in most cases of the “danger-
ous” observables the standard and resummed values
do not meet at [Xstd, Zstd, rstd] (typically for the ones
that start at O(p4)). Though this might indicate that
the standard expansion is convergent less satisfac-
torily in this case and the higher order remainders
might be important here, the difference between the
standard and resummed values lies within the esti-
mated uncertainty of the resummed prediction. Away
from the standard reference point, however, we have
established that the central values diverge substan-
tially from those of the standard approach even for
the “good” observables. This is a signal that, unless
X,Z ∼ 1, the higher order remainders of the standard
chiral expansion might be huge in comparison with
LO+NLO value. Though this feature does not exclude
the possibility that in this case the standard remain-
ders might be saturated by the NNLO corrections, it
could nevertheless be interpreted as an indication of the
instability of the standard chiral expansion.
– We have discussed the role of the remainders within the
resummed approach. We have found the strong sensi-
tivity of the observables connected to πη scattering to
the higher order remainders. This might reduce the pre-
dictive power of this approach, unless additional infor-
mation on the actual size of the remainders is available.
We have tried to make an independent estimate of the
remainders using the simplest version of the resonance
chiral Lagrangian as well as making a comparison with
GχPT. Both these estimates seem to be in accord with
the rough expectation δ ∼ 10% for the remainders only
in some range of the parameters. For some observables

and some corners of the parameter space, they can be
substantially larger. Of course, the convergence proper-
ties of the bare expansion deserves further investigation
by means of going to the NNLO, which is, however, be-
yond the scope of our article.

Let us add some final remarks concerning the interpreta-
tion of the above results from a practical point of view. The
resummed version of the χPT expansion not only seems
to be a suitable framework for taking the effect of large
ss pair vacuum fluctuations into account, but by keep-
ing the remainders as explicit parameters it effectively in-
cludes all orders of the chiral expansion and thus it opens
a space for incorporating further improvements of the pre-
dictions using additional information from various sources.
As our analysis shows, πη scattering allows one to test the
plausibility of the standard assumption X,Z ∼ 1, r ∼ 25
due to the sensitivity of the corresponding observables
to the deviation of X,Z and r from these values. Pro-
vided the experimental data were available, this could be
done purely in the resummed framework using statistical
methods similar to the ones used in the cases of ππ and πK
scattering [8, 9].
On the other hand, to resolve a direct disagreement

between the standard and resummed predictions is more
delicate. At first sight, even though the SχPT corrections
at the NNLO are still not available, the possible experi-
mental data which were in conflict with the standardO(p4)
prediction but still compatible with that of resumed χPT
might indicate problems with the standard chiral expan-
sion based on the assumptionX,Z ∼ 1, r ∼ 25. This might
show up as unusually large O(p6) corrections or as O(p6)
corrections too small to saturate the standard remain-
ders. However, as we have illustrated in Sect. 6.1, the cen-
tral values of the standard O(p4) predictions are plagued
with large uncertainties even for the “good” observables.
This feature together with the lack of information con-
cerning the size of the standard O(p6) corrections would
most likely prevent us from making a decisive conclusion
concerning the possible deviations of the resummed χPT
from the standard chiral expansion. In the light of our
results, this is expected – bad convergence of the stan-
dard chiral expansion does not necessarilymanifest itself as
a direct conflict with the experimental data at NLO, but
rather in large uncontrollable uncertainties attached to its
predictions.
Because of the current lack of low energy πη scatter-

ing data, the comparison with experiment can only be
done indirectly. As we have mentioned in the Introduc-
tion, the promising process here is the rare decay η→
π0π0γγ, where the off-shell πηπη∗ vertex enters the non-
resonant part of the amplitude. As preliminary studies [35,
36] using GχPT show, the effect of the ss pair vacuum
fluctuations parametrized by X,Z away from their stan-
dard values might give large deviations from the prediction
of SχPT [49–51], resulting in the increase of the η-tail of
the diphoton spectrum, which can be in principle observed.
Based on the above results, the more careful analysis using
a resummed version of χPT expansion is expected to yield
qualitatively the same effect [37].
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Appendix A: Standard chiral expansion of
parameters X, Z and r

Here we summarize the formulae leading to the standard
values of X, Z, Y and r used in Sect. 6.3. Using the stan-
dard reparametrization rules explained in Sect. 5.1, we get
up to the NLO order in terms of the O(p4) LECs

Xstd = 1−
M2π
2F 2π

(
32 (Lr6(r2+2)+L

r
8)+3J

r
ππ(0)+(r2+1)

×JrKK(0)+
1

9
(2r2+1)J

r
ηη(0)+

11r2+37

144π2

)
,

Zstd = 1−
M2π
2F 2π

(
16 (Lr4(r2+2)+L

r
5)+ (r2+1)J

r
KK(0)

+4Jrππ(0)+
r2+5

16π2

)
,

rstd = r2−
M2π(r2+1)

2F 2π

(
8 (2Lr8−L5) (r2−1)

−
1

3
(2r2+1)J

r
ηη(0)+J

r
ππ(0)−

(r2−1)

24π2

)
. (A.1)

For rstd we can also use an alternative expression based on
the chiral expansion of r∗2 :

r*std = r∗2−
M2π(r2+1)

2F 2π

(
16Lr8(r2−1)+

1

6
(2r2+1)J

r
ηη(0)

+
1

2
(r2+1)J

r
KK(0)−

3

2
Jrππ(0)+

5(r2−1)

96π2

)
.

(A.2)

∆GMO has the following standard chiral expansion:

∆stdGMO =
M2π(r2−1)

2F 2π

(
32 (2Lr7+L

r
8) (r2−1)

+
1

3
(2r2+1)J

r
ηη(0)+(r2+1)J

r
KK(0)−3J

r
ππ(0)

+
5(r2−1)

48π2

)
. (A.3)

Appendix B: Chiral expansion of the η decay
constant

For the bare expansion of the “good” observables F 2P we
rewrite the standard formulae in the form

F 2π = F
2
0

[
1+
B0m̂

F 20

(
16Lr4(µ)(r+2)+16L

r
5(µ)

+ (r+1)JrKK(0)+4J
r
ππ(0)+

1

16π2
(r+5)

)]

+F 2πδFπ , (B.1)

F 2K = F
2
0

[
1+
B0m̂

F 20

(
16Lr4(µ)(r+2)+8L

r
5(µ)(r+1)

+
3

2
(r+1)

(
JrKK(0)+

1

16π2

)
+
3

2

(
Jrππ(0)+

1

16π2

)

+
1

2
(2r+1)

(
Jrηη(0)+

1

16π2

))]
+F 2KδFK , (B.2)

F 2η = F
2
0

[
1+
B0m̂

F 20

(
16Lr4(µ)(r+2)+

16

3
Lr5(µ)(2r+1)

+3(r+1)

(
JrKK(0)+

1

16π2

))]
+F 2η δFη . (B.3)

Within standard χPT, the O(p2) parameters B0, F0 and r
are expressed using inverted expansions of the observables
F 2P andM

2
P , as explained in Sect. 5.1. This yields the stan-

dard formula for F 2η :

F 2η = F
2
π

[
1+
M2π
F 2π

(
16

3
Lr5(µ)(r2−1)+(r2+1)J

r
KK(0)

−2Jrππ(0)+
1

16π2
(r2−1)

)]
+F 2η δ

st
Fη , (B.4)

with a potentially large remainder δstFη . Numerically, with
Lr5(Mρ) taken from [44] we get

F 2η = 1.625F
2
π . (B.5)

On the other hand, the “safe” reparametrization in terms
of r, X and Z gives

F 2η = F
2
π

[
1+
2

3
(r−1)η(r)−

1

3

M2π
F 2π

(
X

Z

)

×
(
Jrππ(0)−2(r+1)J

r
KK(0)+(2r+1)J

r
ηη(0)

)]

+
1

3

(
3F 2η δFη +F

2
πδFπ −4F

2
KδFK

)
, (B.6)

which is valid as an exact algebraic identity.27

27 This identity can be also rewritten as

4F 2K (1− δFK )−F
2
π(1− δFπ )−3F

2
η (1− δFη)

=

(
X

Z

)
M2π
(
Jrππ(0)−2(r+1)J

r
KK(0)+(2r+1)J

r
ηη(0)

)
.

Within the standard approach, the parameters on the r.h.s.
of this identity can be expressed to the order O(p4) in terms of
the physical observables, and it is interpreted as a O(p4) sum
rule:

4F 2K −F
2
π −3F

2
η =M

2
π

(
Jrππ(0)−2(r2+1)J

r
KK(0)

+(2r2+1)J
r
ηη(0)

)
.

This gives

F 2η = 1.697F
2
π .
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Following the GχPT procedure outlined in Sect. 5.4,
after identifying the corresponding LECs in both ap-
proaches

B0m̂

F 20
Lr4(µ)→

1

8
m̂ξ̃ ,

B0m̂

F 20
Lr5(µ)→

1

8
m̂ξr , (B.7)

and defining the remainders using the physical masses in-
side the chiral logs, we can use the exact formula (B.3) and
write the remainder δFη within GχPT as

F 2η δFη = F
2
η δ
loop
Fη
(µ)+F 20 δ

(4)CT
Fη

(µ)+F 2η δ
GχPT
Fη

.

Here

F 2η δ
loop
Fη
(µ) = 3m̂2(r+1)

(
A0(r+1)+2(r+2)Z

S
0

)

×

(
JrKK(0)+

1

16π2

)
(B.8)

is the extra loop contribution and δ
(4)CT
Fη

(µ) the contribu-

tion of the counterterms from theO(p4) GχPT Lagrangian
renormalized at the scale µ:

δ
(4)CT
Fη

(µ) =
2

3
m̂2
[
1

2
(2A1+A2+4A3+2B1−2B2)

× (1+2r2)+3(A4+2B4)

(
1+
1

2
r2
)

−4CP1 (r−1)
2+2DS(r+2)(2r+1)

]
.

(B.9)

δGχPTFη
is a new remainder, which is exactly independent on

the renormalization scale.
Analogously, for the GχPT formula for F 2π we have, be-

sides the substitution (B.7) to (B.1), to insert

F 2πδFπ = F
2
πδ
loop
Fπ
(µ)+F 20 δ

(4)CT
Fπ

(µ)+F 2πδ
GχPT
Fπ

,

(B.10)

where the loop and counterterm contribution are now

F 2πδ
loop
Fπ
(µ) = 8m̂2

(
A0+(r+2)Z

S
0

)
)

(
Jrππ(0)+

1

16π2

)

+ m̂2(r+1)
(
A0(r+1)+2(r+2)Z

S
0

)

×

(
JrKK(0)+

1

16π2

)
,

δ
(4)CT
Fπ

(µ) = 2m̂2
[
A1+

1

2
A2+2A3+(A4+2B4)

×

(
1+
1

2
r2
)
+B1−B2+2D

S(r+2)

]
.

(B.11)

Finally, we have the expression for F 2K , where the remain-
der is replaced with

F 2KδFK = F
2
Kδ
loop
FK
(µ)+F 20 δ

(4)CT
FK

(µ)+F 2Kδ
GχPT
FK

(B.12)

and the loops and counterterms contribute as follows:

F 2Kδ
loop
FK
(µ) = 3m̂2(A0+(r+2)Z

S
0 ))

(
Jrππ(0)+

1

16π2

)

+
3

2
m̂2(r+1)

(
A0(r+1)+2(r+2)Z

S
0

)

×

(
JrKK(0)+

1

16π2

)
+ m̂2

(
A0(2r

2+1)

+2(r−1)2ZP0 +(r+2)(2r+1)Z
S
0

)

×

(
Jrηη(0)+

1

16π2

)
,

δ
(4)CT
FK

(µ) = m̂2
[
(A1+B1)(r

2+1)+(A2−2B2)r

+2(A4+2B4)

(
1+
1

2
r2
)

+2DS(r+2)(r+1)

]
. (B.13)

In order to reparametrize the GχPT bare expansion in
terms of the masses and decay constants, we can proceed
as follows. Because the exact identity (B.6) is valid inde-
pendently of the version of χPT, we can also use it in the
generalized case, provided we rewrite the remainders ac-
cording to (B.9), (B.10) and (B.12). This step eliminates

the LECs ξ and ξ̃. Collecting the chiral logs we have

F 2η = F
2
π

[
1+
2

3
(r−1)η(r)−

1

3F 2π

(
M̃2π

(
Jrππ(0)+

1

16π2

)

−4M̃2K

(
JrKK(0)+

1

16π2

)

+3M̃2η

(
Jrηη(0)+

1

16π2

))]
+F 2η∆

GχPT
Fη

(µ) ,

(B.14)

where the O(p2) masses are given by (112) and

F 2η∆
GχPT
Fη

(µ) =
1

3
F 20

(
3δ
(4)CT
Fη

+ δ
(4)CT
Fπ

−4δ(4)CTFK

)

+
1

3

(
3F 2η δ

GχPT
Fη

+F 2πδ
GχPT
Fπ

−4F 2Kδ
GχPT
FK

)
(B.15)

The last step consists of replacing the LECs F0, A0, Z
S
0

and ZP0 with the first term of their expansion in terms of
the masses and decay constants as described in Sect. 5.4.
This corresponds to a further redefinition of the general-
ized remainders.

Appendix C: Dispersion representation of the
πη amplitude

For the dispersive representation of the amplitude we need
the S- and T -channel discontinuities at O(p4). In the fol-
lowing subsections we give a list of the relevant O(p2) am-
plitudes G(2)Ai→ij and G(2)ij→Af and the O(p4) disconti-
nuities discGij0 corresponding to the different intermediate
states ij.
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C.1 S-channel discontinuities at O(p4)

– For the πη intermediate state we have

G(2)πη→πη =
1

3
F 20

o

M2π

discGπη0 (s) = 2
λ1/2
(
s,M2π ,M

2
η

)
s

(
1

32π

1

3

o

M2π

)2
F 40
F 2πF

2
η

.

(C.1)

– For theKK intermediate state we have

G(2)πη→K
0K0(K+K−) =−

√
3

4
F 20

×

(
s−
1

3
M2η −

1

3
M2π−

2

3
M2K

)

+
1

4
√
3
F 20

(
2
o

M2K −
o

M2π −
o

M
2

η

)
,

G(2)K
0K0(K+K−)→πη =−

√
3

4
F 20

×

(
s−
1

3
M2η −

1

3
M2π−

2

3
M2K

)

+
1

4
√
3
F 20

(
2
o

M2K −
o

M2π −
o

M2η

)
,

discG
K0K0(K+K−)
0 (s) = 2

√
1−
4M2K
s

×

(
1

32π

)2
3

16

[(
s−
1

3
M2η −

1

3
M2π−

2

3
M2K

)

−
1

3

(
2
o

M2K −
o

M2π −
o

M2η

)]2
F 40
F 4K
. (C.2)

C.2 T -channel discontinuities at O(p4)

– For the ππ intermediate state we have

G(2)ππ→ππ,I=0 = F 20

[(
s−
4

3
M2π

)
+
5

6

o

M2π

]
,

discGππ,I=00 (s) = 2σ(s)

(
1

32π

)2
1

3

o

M2π

×

[(
s−
4

3
M2π

)
+
5

6

o

M2π

]
F 40
F 4π
.

(C.3)

– For the ηη intermediate state we have

G(2)ηη→ηη =−
1

3
F 20

(
o

M2π −4
o

M2η

)
,

discGηη0 (s) =−2
1

2

√
1−
4M2η
s

(
1

32π

)2

×
1

9

o

M2π

( o

M2π −4
o

M2η

)
F 40
F 4η
. (C.4)

– For theKK intermediate state28 we have

G(2)ππ→K
0K0(K+K−),I=0

=∓

√
3

4
F 20

[(
s−
2

3
M2π−

2

3
M2K

)
+
2

3

(
o

M2K +
o

M2π

)]
,

G(2)K
0K0(K+K−)→ηη,I=0 =

±
1

4
F 20

[ (
3s−2M2K−2M

2
η

)
+

(
2
o

M2η −
2

3

o

M2K

)]
,

discG
K0K0(K+K−),I=0
0 (s) =√
1−
4M2K
s

(
1

32π

)2
1

16

[(
s−
2

3
M2π−

2

3
M2K

)

+
2

3

( o

M2K +
o

M2π

)][ (
3s−2M2K−2M

2
η

)

+

(
2
o

M2η −
2

3

o

M2K

)]
F 40
F 4K
. (C.5)

Appendix D: The scalar bubble

In this appendix we summarize the formulae for the scalar
bubble, defined as

JPQ(q
2) =−i

∫
ddk

(2π)d

×
1

(k2−M2P +i0)
(
(k− q)2−M2Q+i0

)

=−2λ∞+J
r
PQ(q

2) . (D.1)

Here, as usual

λ∞ =
µd−4

16π2

(
1

d−4
−
1

2
(ln 4π+Γ ′(1)+1)

)
(D.2)

and JrPQ(s) = J
r
PQ(0)+JPQ(s), where

JrPQ(0) =−
1

16π2
M2P ln(M

2
P /µ

2)−M2Q ln(M
2
Q/µ

2)

M2P −M
2
Q

(D.3)

and JPQ(s), sometimes called the Chew–Mandelstam
function, can be expressed by means of the once subtracted
dispersion relation as

JPQ(s) =
s

16π2

∫ ∞
(MP+MQ)

2

dx

x

λ1/2(x,M2P ,M
2
Q)

x

1

x− s
.

(D.4)

28 Let us note that

GI=0(s, t;u) =−
1
√
3
δabGab(s, t;u) =−

√
3G(s, t;u) .
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The explicit form of JPQ(s) reads

JPQ(s) =
1

32π2

(
2+
∆PQ

s
ln
M2Q
M2P
−
ΣPQ

∆PQ
ln
M2Q
M2P

+2

(
s− (MP −MQ)2

)
s

σPQ(s) ln
σPQ(s)−1

σPQ(s)+1

)
,

(D.5)

where

∆PQ =M
2
P −M

2
Q ,

ΣPQ =M
2
P +M

2
Q ,

σPQ(t) =

√
s− (MP +MQ)2

s− (MP −MQ)2
=

√
1−

4MPMQ
s− (MP −MQ)2

.

(D.6)

In the limitMP →MQ we get

JrPP (0) =−
1

16π2

(
ln
M2P
µ2
+1

)

JPP (s) =
1

16π2

(
2+σPP (s) ln

σPP (s)−1

σPP (s)+1

)
.

(D.7)

Appendix E: O(p4) constants L4–L8 in terms
of masses and decay constants

In this appendix we summarize the formulae used in
the text for the reparametrization of bare expansions
of “good” observables. We use the abbreviated notation
(102)–(105). From the bare expansion of “good” variables
F 2π and F

2
K we obtain

4
o

M2π L
r
4(µ) =

1

2
(1−Z−η(r))

F 2π
r+2

−
M2π

4(r+2)(r−1)

X

Z

×

[
(4r+1)Jrππ(0)+(r−2)(r+1)J

r
KK(0)

− (2r+1)Jrηη(0)+
(r+2)(r−1)

16π2

]

+
2F 2KδFK − (r+1)F

2
πδFπ

2(r+2)(r−1)
, (E.1)

4
o

M2π L
r
5(µ) =

1

2
F 2πη(r)+

M2π
4(r−1)

X

Z

[
5Jrππ(0)− (r+1)

×JrKK(0)− (2r+1)J
r
ηη(0)−

3(r−1)

16π2

]

− (r+1)−
F 2KδFK −F

2
πδFπ

(r−1)
. (E.2)

In the same way, from the expansion of F 2PM
2
P we get

4
o

M4π L
r
6(µ) =

1

4

F 2πM
2
π

r+2
(1−X− ε(r))−

M4π
72(r−1)(r+2)

×

(
X

Z

)2[
27rJrππ(0)+9(r+1)(r−2)J

r
KK(0)

+(2r+1)(r−4)Jrηη(0)+
11(r−1)(r+2)

16π2

]

−
F 2πM

2
πδFπMπ [(r+1)

2]−4F 2KM
2
KδFKMK

4(r2−1)(r+2)
,

(E.3)

4
o

M4π L
r
7(µ) =−

1

8
F 2πM

2
π

(
ε(r)−

∆GMO

(r−1)2

)

−
{
3(1+ r)F 2ηM

2
η δFηMη

+(2r2+ r−1)F 2πM
2
πδFπMπ

− 8rF 2KM
2
KδFKMK

} 1

8(r−1)2(r+1)
,

(E.4)

4
o

M4π L
r
8(µ) =

1

4
F 2πM

2
πε(r)+

M4π
24(r−1)

(
X

Z

)2

×

[
9Jrππ(0)−3(r+1)J

r
KK(0)− (2r+1)

×Jrηη(0)−
5(r−1)

16π2

]

−
2F 2KM

2
KδFKMK − (r+1)F

2
πM

2
πδFπMπ

2(r2−1)
.

(E.5)

Appendix F: Lagrangian of GχPT to O(p4)

Here we give the traditional form of the GχPT Lagrangian.
In the following we use the notation:

χ=M+ s+ip ,

∇U = ∂U − i(v+a)U +iU(v−a) ,

χ= ∂χ− i(v+a)χ+iχ(v−a) . (F.1)

Up to the order O(p4), the Lagrangian can be split into
O(p2), O(p3) and O(p4) parts:

L= L2+L3+L4 , (F.2)

where

Ln =
∑

i+j+k=n

L(i,j,k) (F.3)

and (i, j, k) indicates the number of derivatives, χ sources
and powers of B0, respectively. Then for O(p

2) we get

L(2,0,0) =
F 20
4
〈∇µU

+∇µU〉 ,

L(0,1,1) =
F 20
2
B0〈U

+χ+χ+U〉 ,

L(0,2,0) =
F 20
4

(
A0〈(U

+χ)2+(χ+U)2〉

+ Z
S

0 〈U
+χ+χ+U〉2+Z

P

0 〈U
+χ−χ+U〉2

)
.

(F.4)
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At the order O(p3) one has

L(2,1,0) =
F 20
4
(ξ〈∇µU

+∇µU(χ+U +U+χ)〉

+ ξ̃〈∇µU
+∇µU〉〈χ+U +U+χ〉) ,

L(0,3,0) =
F 20
4
(ρ1〈(χ

+U)3+(U+χ)
3〉

+ρ2〈(χ
+U +U+χ)χ

+
χ〉

+ρ3〈(χ
+U)2− (U+χ)2〉〈χ+U −U+χ〉

+ρ4〈(χ
+U)2+(U+χ)

2〉〈χ+U +U+χ

+ρ5〈χ
+U +U+χ〉〈χ+χ〉

+ρ6〈χ
+U −U+χ〉2〈χ+U +U+χ〉

+ρ7〈χ
+U +U+χ〉3) ,

L(2,0,1) =
F 20B0

4
δ
(1)
d 〈∇µU

+∇µU〉 ,

L(0,2,1) =
F 20B0

4

(
δ(1)A0〈(U

+χ)2+(χ+U)2δ(1)Z
S

0

+ 〈U+χ+χ+U〉2+ δ(1)Z
P

0 〈U
+χ−χ+U〉2

)
,

L(0,1,2) =
F 20
2
B20δ

(1)
χ 〈U

+χ+χ+U〉 . (F.5)

For the O(p4) Lagrangian, the building blocks are

L(4,0,0) = L1〈∇µU
+∇µU〉2+L2〈∇µU

+∇νU〉〈∇
µU+∇νU〉

+L3〈∇µU
+∇µU∇νU

+∇νU〉

− iL9
〈
FRµν∇

µU∇νU++FLµν∇
µU+∇νU

〉
+L10

〈
U+FRµνUF

L
µν

〉
+H1

〈
FRµνF

RµνFLαβF
Lαβ
〉
,

L(2,1,1) =
F 20B0

4
(δ(1)ξ〈∇µU

+∇µU(χ+U +U+χ)〉

+ δ(1)ξ̃〈∇µU
+∇µU〉〈χ+U +U+χ〉) ,

L(2,0,2) =
F 20B

2
0

4
δ
(2)
d 〈∇µU

+∇µU〉

L(2,2,0) =
F 20
4

{
A1〈∇µU

+∇µU(χ+χ+U+χχ+U)〉 ,

+A2〈(∇µU
+)Uχ+(∇µU)U+χ〉

+A3
〈
∇µU

+U(χ+∇µχ−∇µχ+χ)

+∇µUU
+(χ∇µχ+−∇µχχ+)

〉
+A4〈∇µU

+∇µU〉〈χ+χ〉

+B1〈∇µU
+∇µU(χ+Uχ+U +U+χU+χ)〉

+B2〈∇µU
+χ∇µU+χ+χ+∇µUχ+∇µU〉

+B4〈∇µU
+∇µU〉〈χ+Uχ+U +U+χU+χ〉

+CS1 〈∇µUχ
++χ∇µU

+〉〈∇µUχ++χ∇µU+〉

+CS2 〈∇µχ
+U +U+∇µχ〉〈∇

µχ+U +U+∇µχ〉

+CS3 〈∇µχ
+U +U+∇µχ〉〈∇

µU+χ+χ+∇µU〉

+CP1 〈∇µUχ
+−χ∇µU

+〉〈∇µUχ+−χ∇µU+〉

+CP2 〈∇µχ
+U −U+∇µχ〉〈∇

µχ+U −U+∇µχ〉

+CP3 〈∇µχ
+U −U+∇µχ〉〈∇

µU+χ−χ+∇µU〉

+DS〈∇µU
+∇µU(χ+U +U+χ)〉〈χ+U +U+χ〉

+DP 〈∇µU
+∇µU(χ+U −U+χ)〉〈χ+U −U+χ〉

}

+H2
〈
∇µχ∇

µχ+
〉
,

L(0,4,0) =
F 20
4
{E1〈(χ

+U)4+(U+χ)4〉

+E2〈χ
+χ(χ

+
Uχ+U +U+χU+χ)〉

+E3〈χ
+χU+χχ+U〉

+FS1 〈χ
+Uχ+U +U+χU+χ〉2

+FS2 〈(χ
+U)3+(U+χ)

3〉〈χ+U +U+χ〉

+FS3 〈χ
+χ(χ+U +U+χ)〉〈χ+U +U+χ〉

+FS4 〈(χ
+U)2+(U+χ)

2〉〈χ+χ〉

+FP1 〈χ
+Uχ+U −U+χU+χ〉2

+FP2 〈(χ
+U)3+(U+χ)

3〉〈χ+U +U+χ〉

+FP3 〈χ
+χ(χ+U −U+χ)〉〈χ+U −U+χ〉

+FSS5 〈(χ
+U)2+(U+χ)

2〉〈χ+U +U+χ〉2

+FSS6 〈χ
+χ〉〈χ+U +U+χ〉2

+FSP5 〈(χ
+U)2+(U+χ)

2〉〈χ+U −U+χ〉

+FSP6 〈χ
+χ〉〈χ+U −U+χ〉2

+FSP7 〈(χ
+U)2− (U+χ)2〉

× 〈χ+U −U+χ〉〈χ+U +U+χ〉

+H3
〈
χχ+χχ+

〉
+H4

〈
χχ+
〉2
,

L(0,3,1) =
F 20B0

4
(δ(1)ρ1〈(χ

+U)3+(U+χ)
3〉

+ δ(1)ρ2〈(χ
+U +U+χ)χ

+
χ〉

+ δ(1)ρ3〈(χ
+U)2− (U+χ)2〉〈χ+U −U+χ〉

+ δ(1)ρ4〈(χ
+U)2+(U+χ)

2〉〈χ+U +U+χ

+ δ(1)ρ5〈χ
+U +U+χ〉〈χ+χ〉

+ δ(1)ρ6〈χ
+U −U+χ〉2〈χ+U +U+χ〉

+ δ(1)ρ7〈χ
+U +U+χ〉3) ,

L(0,2,2) =
F 20B

2
0

4

(
δ(2)A0〈(U

+χ)2+(χ+U)2〉

+ δ(2)Z
S

0 〈U
+χ+χ+U〉2

+ δ(2)Z
P

0 〈U
+χ−χ+U〉2

)
,

L(0,1,3) =
F 20
2
B30δ

(2)
χ 〈U

+χ+χ+U〉 . (F.6)

In fact, identifying F0 with the Goldstone boson decay
constant and B0 =Σ/F

2
0 where Σ =−〈uu〉0 (in the chiral

limit), we have

δ
(i)
d = δ

(i)
χ = 0 . (F.7)

As usual, we can also resum the powers ofB0 already at the
Lagrangian level and write

Ln =
∑
i+j=n

L(i,j) , (F.8)

with

L(i,j) =
∑
k

L(i,j,k) (F.9)
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and denote

A0 =A0+B0δ
(1)A0+B

2
0δ
(2)A0+ . . . ,

ZS,P0 = Z
S,P

0 +B0δ
(1)Z

S,P

0 +B20δ
(2)Z

S,P

0 + . . . ,

ξ = ξ+B0δ
(1)ξ+ . . . ,

ξ̃ = ξ̃+B0δ
(1)ξ̃+ . . .

ρi = ρi+B0δ
(1)ρi+ . . . , (F.10)

etc. These LECs, without the bars, are used in the main

text. Note that while the O(p2) parameters A0, Z
S,P

0 and

the O(p3) LECs ξ̃ and ξ are renormalization scale indepen-
dent, the renormalized resumed parameters ZS,P,r0 , Ar0 and
ξ̃r, ξr run with µ in the same way as 16(B0/F0)

2Lr6−8 and
8B0/F

2
0L4,5 within standard χPT.

Appendix G: Coefficients of the dispersive
part of the GχPT amplitude

In these formulae as well as in the following two appen-
dices, the masses M̃2P are the generalized O(p

2) masses
given by (112). We have

απηM̃2π = 2
[
m̂B0+8m̂

2A0+2m̂
2ZS0 (5r+4)

−8m̂2ZP0 (r−1)
]
,

απηKM̃
2
π = 4m̂

2(r2−1)
(
A0+2Z

P
0

)
,

αππM̃
2
π = 2m̂B0+16m̂

2A0+4m̂
2ZS0 (r+8) ,

αηη(4M̃
2
η − M̃

2
π) =

2

3
m̂B0(1+8r)+

16

3
m̂2A0(1+8r

2)

+
4

3
m̂2ZS0 (8+41r+32r

2)

+
32

3
m̂2ZP0 (r−1)(4r−1) ,

(απK −1)M̃KM̃π = 6(A0+2Z
S
0 )m̂

2(r+1) ,

αηK(2M̃
2
η −
2

3
M̃2K) =

2

3

[
m̂B0(1+3r)

+ m̂2A0(3+10r+19r
2) ,

+2m̂2ZS0 (6+19r+11r
2)

+16m̂2ZP0 r(r−1)
]
. (G.1)

Appendix H: Parameters α–ω within the
generalized χPT

Here we summarize the formulae in terms of the decompos-
ition of the remainders. For the parameter α we write

δα = δ
loop
α +3

m̂2F 20
F 2πM

2
π

δCTα (µ)+ δ
GχPT
α . (H.1)

For the counterterm contribution we get

δCTα (µ) =
1

3
m̂
[
81ρ1+ρ2+(80−64r−16r

2)ρ3

+(100+64r+34r2)ρ4+(2+ r
2)ρ5

+(96−96r)ρ6+(144+288r+108r
2)ρ7
]

+
8

3

[
− (B1−B2)Σπη+2D

PM2π(r−1)

−2CP1 M
2
η (r−1)−

1

2
DS [Σπη(5r+4)]

−2B4
[
3M2η +M

2
π(2r

2+1)
] ]

+
1

3
m̂2
[
256E1+16E2+F

P
1 (256−256r

2)

+FS4 (32+16r
2)+FS1 (256+320r

2)

+FSP5 (192−320r+160r
2−32r3)

+FP2 (240−216r−24r
3)

+FSP6 (32−32r+16r
2−16r3)

+FP3 (16−8r−8r
3)+FS3 (16+10r+10r

3)

+FSS6 (32+40r+16r
2+20r3)

+FSP7 (384−160r−256r
2+32r3)

+FS2 (400+234r+74r
3)

+FSS5 (576+720r+480r
2+168r3)

]
(H.2)

and the loops contribute as follows:

1

3
F 2πM

2
πδ
loop
α =

1

3

{[
M̃2π
(
3B0m̂+64A0m̂

2

+2ZS0 m̂
2(15r+32)−8ZP0 m̂

2(3r−8)
)]

−6B20m̂
2
}(
Jrππ(0)+

1

16π2

)

+
2

3

{[
M̃2K
(
B0m̂+2A0m̂

2(r+8)

+2ZS0 m̂
2(15r+8)−8ZP0 m̂

2(3r−2)
)]

−B20m̂
2(r+1)

}(
JrKK(0)+

1

16π2

)

×
1

9

{[
M̃2η
(
B0m̂+32A0m̂

2

−16ZP0 m̂
2(5r−2)+2ZS0 m̂

2(41r+16)
)]

−
2

3
B20m̂

2(2r+1)
}(
Jrηη(0)+

1

16π2

)

+
2

9

{[
M̃2π+4m̂

2
(
3A0−4(r−1)Z

P
0

+2(2r+1)ZS0
)]2
−4B20m̂

2
}
Jrπη(0)

+
3

4

{[
2

3
M̃2π−

8

3
(r−1)m̂2

(
A0+2Z

P
0

) ]2

−
16

9
B20m̂

2

}
JrKK(0)

+
1

3

{[
M̃2π+4m̂

2
(
3A0−4(r−1)Z

P
0

+2(2r+1)ZS0
)]
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×

[
−2M2π+

3

2
M̃2π+10m̂

2
(
A0+2Z

S
0

) ]

−2B0m̂
(
3B0m̂−2M

2
π

)}
Jrππ(0)

+
2

9

{[
M̃2π+4m̂

2
(
3A0−4(r−1)Z

P
0

+2(2r+1)ZS0
)][
M̃2η −

1

4
M̃2π

×+m̂2
(
(8r2+1)A0+8r(r−1)Z

P
0 +2

× (2r+1)2ZS0
)]
−
1

3
B20m̂

2(8r+1)

}
Jrηη(0)

+
1

8

{[
−2M2π+2M̃

2
π+8(r+1)m̂

2

×
(
A0+2Z

S
0

) ][
−6M2η +6M̃

2
η −
8

3
M̃2K

+
8

3
(r+1)m̂2

(
3rA0+2(r−1)Z

P
0

+2(2r+1)ZS0
)]
−2
(
2B0m̂−M

2
π

)

×

(
4

3
B0m̂(4r+1)−6M

2
η

)}
JrKK(0) .

(H.3)

In the same way we have for β

βδβ = βδ
loop
β + m̂2F 20 δ

CT
β (µ)+βδ

GχPT
β , (H.4)

where

δCTβ (µ) =
8

3
[(CS1 +D

S)(2r+1)+2B4(r
2+2)] (H.5)

βδloopβ =−
3

4

{[
2

3
M̃2π−

8

3
(r−1)m̂2

(
A0+2Z

P
0

)]

−
4

3
B0m̂

}
JrKK(0)+

1

3

{[
M̃2π+4m̂

2

×
(
3A0−4(r−1)Z

P
0 +2(2r+1)Z

S
0

)
]−2B0m̂

}

×Jrππ(0)+
1

8

{[
6(M̃2η −M

2
η + M̃

2
π−M

2
π)−

8

3
M̃2K

+
8

3
(r+1)m̂2

(
3A0(r+3)+4Z

S
0 (r+5)

+2(r−1)ZP0
)]

−

[
8

3
B0m̂(2r+5)−6M

2
η −6M

2
π

]}
JrKK(0) .

(H.6)

For the remaining two parameters the corresponding
decomposition of the remainders,

γδβ(µ) = γδγ
loops(µ)+ m̂2F 20 δ

CT
γ (µ)+γδ

GχPT
γ ,

(H.7)

ωδω(µ) = ωδω
loops(µ)+ m̂2F 20 δ

CT
ω (µ)+ωδ

GχPT
ω ,

(H.8)

is trivial, i.e.

δγ
loops(µ) = δCTγ (µ) = δω

loops(µ) = δCTω (µ) = 0 .

(H.9)

Appendix I: Generalized χPT contributions to
the bare expansion remainders for
the masses

The expressions for ξ, ξ̃ can be obtained from the exact al-
gebraic identities (E.2) after the identification (117) and
using the representation (B.10) and (B.11) for the remain-
der of F 2π and (B.12) and (B.13) for the remainder of F

2
K .

In the same spirit, A0, Z
S
0 and Z

P
0 can be expressed using

the identities (E.5) and the following remainders:

F 2πM
2
πδFπMπ = F

2
πM

2
πδ
loop
FπMπ

(µ)+F 20 m̂
2δCTFπMπ(µ)

+F 2πM
2
πδ
GχPT
FπMπ

,

F 2KM
2
KδFKMK = F

2
KM

2
Kδ
loop
FKMK

(µ)+F 20 m̂
2δCTFKMK (µ)

+F 2KM
2
Kδ
GχPT
FKMK

,

F 2ηM
2
η δFηMη = F

2
ηM

2
η δ
loop
FηMη

(µ)+F 20 m̂
2δCTFηMη (µ)

+F 2ηM
2
ηδ
GχPT
FηMη

, (I.1)

where

F 2πM
2
πδ
loop
FπMπ

(µ) =[
M̃2π
(
3B0m̂+16A0m̂

2+2ZS0 m̂
2(3r+16)

)
−6B20m̂

2
]

×

(
Jrππ(0)+

1

16π2

)

+2
[
M̃2K
(
B0m̂+2A0m̂

2(r+2)+2ZS0 m̂
2(3r+4)

)

−B20m̂
2(r+1)

](
JrKK(0)+

1

16π2

)

+
1

3

[
M̃2η
(
B0m̂+8A0m̂

2−8ZP0 m̂
2(r−1)+2ZS0 m̂

2

× (5r+4)−
2

3
B20m̂

2(2r+1)
)](
Jrηη(0)+

1

16π2

)
,

(I.2)

δCTFπMπ(µ) = m̂
[
9ρ1+ρ2+2ρ4(10+4r+ r

2)

+ρ5(2+ r
2)+12ρ7(4+4r+ r

2)
]

+2m̂2
[
8E1+2E2+8F

S
1 (2+ r

2)

+FS2 (9r+ r
3+20)+FS3 (4+ r+ r

3)

+2FS4 (2+ r
2)+4FSS5 (r+2)(r

2+2r+6)

+2FSS6 (r+2)(2+ r
2)
]
; (I.3)

then

F 2KM
2
Kδ
loop
FKMK

(µ) ={
3

4

[
M̃2π
(
B0m̂+A0m̂

2(r+5)+2ZS0 m̂
2(r+6)

)
−2B20m̂

2
]
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×

(
Jrππ(0)+

1

16π2

)
+
3

2

[
M̃2K
(
B0m̂+3A0m̂

2(r+1)

+2ZS0 m̂
2(3r+4)

)
−B20m̂

2(r+1)
]

×

(
JrKK(0)+

1

16π2

)

+
1

12

[
M̃2η
(
5B0m̂+A0m̂

2(17r+5)+8ZP0 m̂
2(r−1)

+2ZS0 m̂
2(13r+14)

)
−
10

3
B20m̂

2(2r+1)

]

×

(
Jrηη(0)+

1

16π2

)}
(r+1) , (I.4)

δCTFKMK (µ) =
1

2
m̂
[
3ρ1(1+ r)(1+ r+ r

2)+ρ2(1+ r
3)

+6ρ4(r+1)(2+2r+ r
2)+ρ5(r+1)(2+ r

2)

+12ρ7(r+1)(r+2)
2
]

+ m̂2
[
2E1(1+ r)

2(1+ r2)

+E2(1+ r)
2(1− r+ r2)+

1

2
E3
(
r2−1

)2
+4FS1 (1+ r)

2(2+ r2)

+FS2 (1+ r)(8+9r+9r
2+4r3)

−FS3 (1+ r)(4− r+ r
2+2r3)

+FS4 (1+ r)
2(2+ r2)

+4FSS5 (1+ r)(2+ r)(4+3r+2r
2)

+2FSS6 (1+ r)(2+ r)(2+ r
2)
]

(I.5)

and

F 2ηM
2
η δ
loop
FηMη

(µ) =
[
M̃2π
(
B0m̂+8A0m̂

2−8m̂2ZP0 (r−1)

+2m̂2ZS0 (4+5r)
)
−2B20m̂

2
](
Jrππ(0)+

1

16π2

)

+
2

3

[
M̃2K
(
B0m̂ (1+4r)+2A0m̂

2
(
2+ r+8r2

)
+8m̂2ZP0 (r−1)(2r−1)+2m̂

2ZS0 (4+15r+8r
2)
)

−B20m̂
2(4r+1)(r+1)

](
JrKK(0)+

1

16π2

)

+
1
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, (I.6)

δCTFηMη (µ) =
1

3
m̂
[
9ρ1(1+2r

3)+ρ2(1+2r
3)

+16ρ3(r−1)
2(1+ r)

+2ρ4(10+8r+17r
2+10r3)

+ρ5(1+2r)(2+ r
2)+16ρ6(2−3r+ r

3)

+12ρ7(2+ r)
2(1+2r)

]
+
2

3
m̂2
[
8E1(1+2r

4)+2E2(1+2r
4)

+8FS1 (r
2+2)(2r2+1)+16FP1 (r

2−1)2

+FS2 (20+13r+37r
3+20r4)

+12FP2 (r
2+ r+1)(r−1)2

+FS3 (4+5r+5r
3+4r4)

+4FP3 (r
2+ r+1)(r−1)2

+2FS4 (r
2+2)(2r2+1)

+12FSS5 (r+2)(2r
3+3r2+2r+2)

+8FSP5 (r
2+2)(r−1)2

+2FSS6 (2r+1)(r+2)(r
2+2)

+4FSP6 (r
2+2)(r−1)2

+16FSP7 (r+2)(r+1)(r−1)
2
]
. (I.7)

Appendix J: Resonance amplitude and
remainders estimates

Here we give the contribution to the amplitude [38] related
to the resonance exchange, derived from the leading order
Lagrangian of RχT (we have confirmed this expression by
independent calculation)

GR(s, t;u) = 4
1

M2S1− t

(
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t−2M2π

)
+2c̃m

o

M2π

)

×
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o
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+
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3

1

M2S− s
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2
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2

3
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3
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(
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o
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×

(
cd
(
t−2M2η
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2
o

M2η −
o

M2π
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(
o
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)
. (J.1)

The resonance estimate of the remainders δRγ and δ
R
ω are

γδRγ =−
8

3M6S

(
cdM

2
π− cm

o

M2π

)

×

(
cdM

2
η − cm

(
2
o
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o
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))

+
4

3

cd

M4S

(
cdM

2
η − cm

(
2
o

M2η −
o

M2π

))

+
1

3

c2dΣπη

M2S (M
2
S−Σπη)
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+
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, (J.2)

ωδRω =−
1

3

c2dΣπη

M2S (M
2
S−Σπη)

+
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3

c2m

o

M4π
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+
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3

cdcm

(M2S−Σπη)
2

o

M2π . (J.3)
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